
Mining Frequent Sequential Patterns with First-Occurrence
Forests

Erich A. Peterson
Department of Applied Science

University of Arkansas at Little Rock
2801 S. University Ave.
Little Rock, AR 72204

Peiyi Tang
Department of Computer Science

University of Arkansas at Little Rock
2801 S. University Ave.
Little Rock, AR 72204

ABSTRACT
In this paper, a new pattern-growth algorithm is presented
to mine frequent sequential patterns using First-Occurrence
Forests (FOF). This algorithm uses a simple list of pointers
to the first-occurrences of a symbol in the aggregate tree
[1], as the basic data structure for database representation,
and does not rebuild aggregate trees for projection data-
bases. The experimental evaluation shows that our new FOF
mining algorithm outperforms the PLWAP-tree mining al-
gorithm [2] and the FLWAP-tree mining algorithm [3], both
in the mining time and the amount of memory used.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

General Terms
Algorithms, Performance, Design

Keywords
Projection Database, Frequent Patterns

1. INTRODUCTION
As datasets from scientific and commercial applications

become larger and larger, the information and knowledge
“hidden” within them becomes increasingly valuable. One
area of data mining, which has attracted a significant amount
of research, is that of mining frequent sequential patterns
from sequences. The reason for this is the large number of
domains and applications that can benefit from it. Mining
web log, protein, and DNA sequences are just a few of these
applications.

Due to the exponential search space and large datasets to
mine, data mining algorithms and methods must be efficient
in both time and space (i.e. to complete the mining process
in the shortest time), using the least amount of memory

space. The most notable algorithms of frequent sequential
pattern mining1 include the apriori-based algorithms such as
GSP [4] and pattern-growth algorithms such as the WAP-
tree mining algorithm [5], the PLWAP-tree mining algorithm
[2] and the FLWAP-tree mining algorithm [3]. The pattern
growth algorithms find frequent patterns in a depth-first
search of the search space. They grow frequent patterns by
mining increasingly smaller projection databases, and thus,
are faster than apriori-based algorithms. For pattern-growth
algorithms, database representation has a strong impact on
both the mining time and the memory used.

The WAP-tree (Web Access Patterns Tree) mining algo-
rithm [5] uses the aggregate tree [1] to represent a sequence
database, where all nodes of the same label are linked when
the tree is built. It grows the suffixes of frequent patterns
and has to rebuild a new aggregate tree for each projection
database. Thus, it uses a lot of memory. The PLWAP-tree
(Pre-Order Linked WAP-tree) mining algorithm [2] links the
nodes of the same symbol in a pre-order traversal. It grows
the prefixes of frequent patterns and uses position code to
determine the boundary of projection databases. Thus, it
does not need to rebuild aggregate trees for projection data-
bases. The FLWAP-tree (First-Occurrence Linked WAP-
tree) mining algorithm [3] links only the first-occurrences of
each symbol in the tree and outperforms the PLWAP-tree
in mining time tremendously. However, it has to rebuild the
aggregate trees for projection databases and uses a lot of
memory.

While each of the above mentioned algorithms were able to
reduce either the mining time or memory utilization, they
were not able to reduce both. Moreover, all of them are
based on the concept of the linked tree: some nodes of the
same symbols are linked somehow to facilitate mining. They
all strayed away from the simplicity found in the original
aggregate tree for database representation. In this paper,
we get rid of the concept of the linked tree and propose a
new pattern-growth algorithm based on the concept of First-
Occurrence Forests (FOF). We use forests of first-occurrence
subtrees as our basic data structure for the database repre-
sentation, and employ a simple list of tree node pointers to
first-occurrences in the aggregate tree. There is no need to
rebuild aggregate trees for projection databases. The first-
occurrences of a symbol are found using a depth-first search
of the aggregate tree on-the-fly. The experimentation evalu-

1Frequent sequential pattern mining in general mines fre-
quent sequences of itemsets [4] from sequence itemset data-
bases. In this paper (and others [5, 2, 3]), sequential patterns
are refered to as sequences of items or symbols.

34

Dean
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.ACM-SE ‘08, March 28–29, 2008, Auburn, AL, USA.Copyright 2008 ACM ISBN 978-1-60558-105-7/08/03…$5.00.



ation shows that our algorithm is faster and uses less mem-
ory than both the PLWAP-tree mining algorithm [2] and the
FLWAP-mining algorithm [3].

The rest of this paper is organized as follows: Section 2
provides the preliminaries of conditional searching for all
pattern-growth algorithms. Section 3 describes our new
First-Occurrence Forests (FOF) mining algorithm. Section 4
presents the results of experimental evaluations. Finally,
Section 5 concludes the paper.

2. CONDITIONAL SEARCHING
PRELIMINARIES

Let Σ be the set of symbols. A non-empty sequence s is a
sequence of finite number of symbols from Σ, s = s1 · · · sm,
such that si ∈ Σ for all 1 ≤ i ≤ m < ∞ and si and sj are
not necessarily different for i 6= j. The length of sequence
s = s1 · · · sm is m. The empty sequence denoted as ǫ is
a special sequence of length 0. A sequence database D is
a multi-set of finite sequences including the possible empty
sequence. A pattern is also a non-empty sequence. A non-
empty finite sequence is a subsequence of another sequence
if it is embedded in that sequence. In particular, sequence
s′ = s′1 · · · s

′

n is a subsequence of sequence s = s1 · · · sm,
denoted as s′ ⊆ s, if and only if n ≤ m and there exist
i1, · · · , in such that 1 ≤ i1 < · · · < in ≤ m and s′j = sij

for
all 1 ≤ j ≤ n. The empty sequence ǫ is a subsequence of
any sequence. A sequence s in D is said to support pattern
p if p is a subsequence of s. The support of pattern p in D,
denoted as SupD(p), is the number of sequences in D that
support p. Given a threshold ξ in interval (0, 1], a pattern
p is frequent with respect to ξ and D if SupD(p) ≥ ξ|D|,
where |D| is the number of sequences in D. ξ|D| is called the
absolute threshold and denoted as η. The frequent sequential
pattern mining problem is to find all the frequent sequential
patterns in D with respect to ξ. Since the empty pattern ǫ is
a subsequence of every sequence in D, it is always frequent
because its support is |D| which is always greater than or
equal to ξ|D| = η.

The pattern-growth algorithms for mining frequent se-
quential patterns mentioned previously, are all based on the
principle of conditional searching. Fundamentally, pattern-
growth algorithms find frequent sequential patterns by travers-
ing the search space tree in the depth-first order, using
smaller projection databases. The new approach presented
in this paper is also a pattern-growth algorithm. For com-
pleteness, we present the basic principles of conditional search-
ing and the abstract pattern-growth algorithm in this sec-
tion. A detailed formal framework to reason about pattern-
growth algorithms can be found in [3].

Given a symbol a from Σ and a sequence s that supports
the single-symbol sequence a (i.e. a ⊆ s), the a-prefix of s is
the prefix of s from the first symbol (the leftmost symbol) to
the first occurrence of a inclusive. For example, the a-prefix
of sequence bcabad is bca rather than bcaba, because the first
occurrence of a is the a underlined. The a-projection of s
is what is left after the a-prefix is removed. In the example
above, the a-projection of sequence bcabad is bad, because
the a-prefix is bca. Note that if a occurs only once and is the
last symbol of s, the a-prefix is s itself and the a-projection
is the empty sequence ǫ. For example, the d-projection of
bcabad is ǫ.

Given database D and a symbol a ∈ Σ, the a-projection

database of D, denoted as Da, is the multi-set of a-projections
of the sequences in D that support a. That is,

Da = {a-projection of s | a ⊆ s ∧ s ∈ D}

For example, the a-projection database of D = {cbaca, bcbaca}
is Da = {ca, ca}.

According to the theory and formal framework of condi-
tional searching [3], the set of all non-empty frequent se-
quential patterns in database D with respect to threshold ξ
can be found by calling Pattern-Grow(ǫ, D, η) with η = ξ|D|
as shown in Figure 1 (reproduced from [3]).

main(database D, int η) {
F ← Pattern-Grow(ǫ, D, η);
return F ;

}

function Pattern-Grow(pattern q, database D, int η) {
F ← ∅;
for each symbol a in Σ do

1: if (SupD(a) ≥ η) then

2: F ← F ∪ {q · a};
3: Let Da be the a-projection database of D;
4: F ← F ∪ Pattern-Grow(q · a, Da, η);

endif

endfor

return F ;
}

Figure 1: Abstract Pattern-Growth Mining Algo-

rithm

acb
bac
cbc

cb

a cb

a a ab b bc c c

a a ab b bc c c

c
c
ac

b

c

b

bc
ǫ

ǫ
ǫ

ǫ

ǫ

ǫ

ǫ

D

Da Db Dc

(Da)c (Db)c (Dc)b×

×××××××××

×××××

Figure 2: Example of Pattern-Growth Mining

Figure 2 (reproduced from [3]) illustrates how the pattern-
growth mining algorithm in Figure 1 mines the frequent
patterns from database D = {acb, bac, cbc} with respect to
ξ = 2/3 (η = 2). Each node represents a database with its
contents in the box. Parentheses in the names of the projec-
tion databases are used to show the projection databases of
projection databases. For example, (Da)c is the c-projection
database of Da. Node × represents a database whose size is
below η = 2, where the pattern growth stops. Each edge rep-
resents the symbol considered for possible extension of the
pattern. A path from the root node to a node other than ×
is a frequent pattern. The frequent patterns mined in the
depth-first order of their discovery are: ǫ, a, ac, b, bc, c, cb.

35



a:3

b:3

a:2

c:2

c:1

c:1

a:1

c:1

b:1

a:1

b:1

a:1

c:1

ǫ:4

(a) Aggregate Tree

a:3

b:3

a:2

c:2

c:1

c:1

a:1

c:1

b:1

a:1

b:1

a:1

c:1

Header Table

a

b 

c

ǫ:4

(b) FLWAP-Tree

rootHeader Table

a

b 

c

a:3 b:1

b:3 a:1

a:2 c:1 b:1

c:2 a:1

c:1 c:1

1 10

11 101

111

1111

11111

1110

11101

1011

10111

111011 101111

a:1

c:1

(c) PLWAP-Tree

Figure 3: Various WAP-tree Implementations

3. MINING FREQUENT PATTERNS WITH
FIRST-OCCURRENCE FORESTS

The algorithm in Figure 1 is an abstract algorithm, in
that it does not specify (1) how a database is represented,
(2) how to find the projection database of a symbol and (3)
how to find the support of a symbol in the database (i.e.
SupD(a)). All these questions are important because they
have a profound impact on the performance of the mining
algorithm.

In this section, we present an implementation of the ab-
stract algorithm, using forests of aggregate trees as the basic
data structure to represent databases. In the next section,
it will be shown that the our implementation and algorithm
is faster and uses less memory than both the PLWAP algo-
rithm [2] using PLWAP-trees and the FLWAP algorithm [3]
using FLWAP-trees. We start with the basic data structure
for database representation.

3.1 Forest of First-Occurrence Subtrees
The aggregate tree [1] is a compact data structure used

to represent a sequence database. Each sequence in the se-
quence database, is represented by a path from the root
node to the node of the last symbol of the sequence. The
path from the root node to any other node, is a common
prefix of possibly multiple sequences in the database. Each
node has a label for the symbol and a count for the number
of sequences that share this node in their paths. The same
idea was used in the WAP-tree [5], and in the FP-tree for
frequent itemset mining in [6].

The aggregate tree can be constructed by entering each
sequence in D into the initial tree, which has only one root
node pointed by a pointer current-node. For a sequence
s1 · · · sn the construction enters each symbol si (i = 1, · · · , n)
using the following algorithm. If current-node has a child
with label si, increase the count of that child and make
current-node point to that child. Otherwise, create a new
child node with label si and count 1, and make current-
node point to this new child node. The details of the algo-
rithm can be found in [1, 5]. Figure 3(a) shows the aggre-
gate tree or base WAP-tree of the example database D =
{abac, abcac, babac, abacc} from [2, 5].

In this paper, the aggregate tree is extended to make the
root node represent the empty symbol ǫ. The count of the
root node is the total number of sequences in the database.

It is obvious that the count of any node in the aggregate
tree is equal to or greater than the sum of the counts of its
children.

The difference between the count of a node and the sum
of the counts of its children, is the number of sequences in D
that end with the symbol of the node. For example, node c:2
has only one child c:1 in the aggregate tree in Figure 3(a).
Therefore, there is 2-1=1 sequence in D that starts with a
and ends with this c. That is the sequence abac.

Integral to all the pattern-growth mining algorithms ab-
stracted in Figure 1 are the tasks of (1) counting the support
of a symbol in the database (i.e. SupD(a) for symbol a) and
(2) identifying the representation of the corresponding pro-
jection database (i.e. Da for symbol a). If the database
is represented by an aggregate tree, these tasks amount to
finding the so-called first-occurrences of the symbol in the
tree. In particular, a node in an aggregate tree is a first-
occurrence of symbol a if it is labeled with a and none of its
ancestors has the same label. For example, the aggregate
tree in Figure 3(a) has two first-occurrences of a: a:3 in the
left subtree and a:1 in the right subtree. All the other nodes
labeled with a are not first-occurrences, because they are
descendants of the first-occurrences of a.

The count of a first-occurrence of a node with label a is
the number of sequences in D that share the common a-
prefix (defined in Section 2), represented by the path from
the root node to this first-occurrence. For example, b:3 is
a first-occurrence of b in the aggregate tree in Figure 3(a).
The count 3 indicates that there are three sequences in D
that share the common b-prefix ab represented by the path
from the root node to b:3. These sequences are abac, abcac
and abacc. Therefore, the sum of the counts of all the first-
occurrences of a symbol a ∈ Σ is the number of sequences in
D that contain at least one occurrence of a (i.e. the support
of a in D, SupD(a)).

Also, the subtrees rooted at the children of a first-occurrence
of symbol a, represent all the non-empty a-projections of the
sequences sharing this common a-prefix. For example, the
two subtrees rooted at the children of the first occurrence b:3
in Figure 3(a) represent the three non-empty b-projections:
ac, cac and acc. Therefore, the a-projection database of D,
Da, can be represented by the subtrees rooted at the chil-
dren of all the first-occurrences of a, plus possible empty se-
quences. Since the purpose of having a-projection database
Da is to grow frequent patterns by using symbols from Σ

36



(see the abstract algorithm in Figure 1), it is sufficient to use
the subtrees rooted at the children of the first-occurrences
of a to represent projection database Da, ignoring possible
empty sequences.

Since first-occurrences play a central role in finding the
support of a symbol and its projection database, all pattern-
growth mining algorithms based on aggregate trees try to
find them efficiently. The PLWAP-tree mining algorithm [2]
links all occurrences of each symbol in a pre-order traver-
sal, turning the aggregate tree into a PLWAP-tree (Pre-order
Linked WAP tree). Figure 3(c) shows the PLWAP-tree from
the running example database. To find the first-occurrences
of a symbol, the algorithm goes through all the occurrences,
following the links and using position codes, to determines
the first-occurrences. The PLWAP-tree algorithm uses the
original PLWAP-tree for the entire mining and does not re-
build agregate trees for projection databases. Thus, it uses
less memory. However, in order to find the first-occurrences
of a symbol, it has to go through all its occurrences, in-
cluding those who are not part of the projection database.
The FLWAP-tree algorithm [3], on the other hand, links
only the first occurrences of each symbol. Figure 3(b) shows
the FLWAP-tree (First-Occurrence Linked WAP tree) of the
same example database. However, the FLWAP-tree algo-
rithm rebuilds every projection database, and thus, uses a
lot of memory. Both the PLWAP-tree [2] and FLWAP-tree
algorithms, [3] are based on the concept of the linked tree:
nodes of the same symbols are linked together somehow.

In this paper, the concept of the linked tree is thrown out
and is replaced with a forest of first-occurrence subtrees as
the basic data structure for projection database represen-
tation. Given a symbol a, each subtree rooted at a first-
occurrence of a is called a first-occurrence subtree of a. The
forest of first-occurrence subtrees of a symbol is simply a
list of pointers to the first-occurrences of a in the aggregate
tree. Figure 4 shows the forest of first-occurrence subtrees
of a using the example database D in Figure 3(a). The root

c:1

a:1

b:1

a:1

c:1

a:1

c:1

c:1

c:2

a:2

b:3

a:3

FOF Q:

(i)

(ii)

Figure 4: FOF for Da

nodes of the first-occurrence subtrees form part (i). The
sum of the counts of these root nodes provides the support
of a in database D (i.e. SupD(a)). The subtrees rooted at
the children of the nodes in part (i) form part (ii) which rep-
resent the projection database Da. Note that all the nodes
in both part (i) and part (ii) already exist in the original ag-
gregate tree of the database to be mined. The memory cost
of the forest of first-occurrences subtrees is simply the list
of pointers. The data type of the forest of first-occurrences

subtrees is called FOF. Figure 5 shows the general FOF data
structure used in the new mining algorithm.

...

...FOF:

(i)

(ii)

Figure 5: FOF Abstract Data Structure

The initial aggregate tree in Figure 3(a) is regarded as a
first-occurrence subtree of empty symbol ǫ. Its root node
is the only first-occurrence of ǫ in D and its count is the
support of ǫ (i.e. SupD(ǫ)), which is equal to the number
of sequences in D. Thus, the FOF data structure contain-
ing the original aggregate tree as the only first-occurrence
subtree is shown in Figure 6.

a:3

b:3

a:2

c:2

c:1

c:1

a:1

c:1

b:1

a:1

b:1

a:1

c:1

ǫ:4

FOF:

(i)

(ii)

Figure 6: Initial FOF for D

3.2 FOF Mining Algorithm
Figure 8 presents the FOF mining algorithm. The data

structure of the nodes in the aggregate tree is depicted in
Figure 7. Each node contains: a label representing a sym-
bol of the node, and an integer for the count. The tree is
linked by the pointers in each node to the first child node
(firstChild) and the next sibling (nextSibling). In the main

struct node {
symbol label;
int count;
node * firstChild;
node * nextSibling;

};

Figure 7: Node Data Structure

function in Figure 8, the aggregate tree was built in line 3
and incorporated into the initial FOF structure initialFOF
in line 4. This initial FOF structure is like the one in Fig-
ure 6. It is passed on to the pattern growth mining function

37



FOFMine() in line 5 to find all non-empty frequent sequen-
tial patterns.

The global variable Q of type FOF in Figure 8, is used
to pass a new FOF structure every time the FOFMine()
function is called.

Function FOFMine() is our pattern-growth mining func-
tion implementing the abstract mining algorithm in Fig-
ure 1. Argument T of type FOF is the FOF structure whose
part (ii), the subtrees rooted at the children of the nodes of
part (i), represent the current database to be mined. Part
(i) of T represents the first occurrences of the previous sym-
bol in the previous call and it is not used in the current call.
Lines 3-6 build the FOF structure of Q for the projection
database of the current database. The if statement at line 7,
corresponds to line 1 of the abstract algorithm in Figure 1.
It sums up the counts of the root nodes of all first-occurrence
subtrees (i.e. the nodes in part (i)) in Q, to see if it is above
η. If it is above η, Q is passed on to the next recursive call of
FOFMine(), to mine the projection database stored in part
(ii) of Q.

The FOF structure for the projection database is estab-
lished in Q, by repeatedly calling function FindFirstOc-
currences() (line 5) for the first child of the root nodes of
each first-occurrence subtrees (part (i)) in T . It effectively
searches for first-occurrences of the symbol in part (ii) of
T . Line 2 of function FindFirstOccurrences() appends the
first-occurrence subtree to Q once it is found. If not found,
the function continues the depth-first search (shown in lines
3-10).

As an example, the algorithm is traced using the running
example database with η = 3. The initial FOF structure for
the original database is shown in Figure 6. This is the FOF
structure passed as T to function FOFMine(). There is one
node N in part (i) of this FOF structure. Starting from the
first child of this N node (node a:3), the function builds the
FOF structure of Q with two first-occurrence subtrees and
this is shown in Figure 4. This Q will be passed on to the
next level call of FOFMine(), because the sum of the counts
of the root nodes of the subtrees (node a:3 and a:1) in Q is
3 +1 = 4, which is greater than η. Therefore, the algorithm
has found frequent pattern a. Then, this Q will be passed to
the recursive call of FOFMine() (line 10), which will build
the new Q for the first occurrence subtrees of symbol a as
shown in Figure 9. This mining process continues until all
frequent sequential patterns have been discovered.

4. EXPERIMENTAL RESULTS
Now that the FOF algorithm has been fully disseminated,

one remaining discussion is left of importance: the evalu-
ation and comparison of the FOF algorithm to other well-
known frequent sequential pattern mining algorithms. As
mentioned before, the two notable types of frequent sequen-
tial pattern mining algorithms are the apriori-based and
pattern-growth. Because our algorithm is a member of the
latter type, we chose to compare our algorithm with the
other well-known pattern-growth algorithms. In our evalu-
ation, the mining time and the memory usage of the FOF
algorithm were compared to those of the PLWAP-tree and
FLWAP-tree algorithms. Source code for the PLWAP-tree
was obtained from the authors’ web site, and the FLWAP-
tree’s source code was obtained through its authors. Each
algorithm was run on the same random datasets generated
by the IBM data generator, and were executed on an E6600

FOF Q;

function main () {
1: FOF initialFOF ← newFOF ();
2: node root;
3: Construct initial aggregate tree starting from root;
4: initialFOF.append(root);
5: F ← FOFMine(ǫ, initialFOF, η);
}

function FOFMine(pattern q, FOF T , int η) {
1: F ← ∅;
2: for each symbol a in Σ do

3: Q← newFOF ();
4: for each root node N of the subtrees in T do

5: F indF irstOccurrences(a,N.firstChild);
6: endfor

7: if (the sum of the count of the root nodes
8: of all the subtrees in Q) ≥ η) then

9: F ← F ∪ {q · a};
10: F ← F ∪ FOFMine(q · a, Q, η);
11: endif

12: delete Q;
13: endfor

14: return F ;
}

procedure FindFirstOccurrences(symbol a, node N) {
1: if (N.label = a) then

2: Q.append(N);
3: else

4: if (N.firstChild 6= NULL) then
5: F indF irstOccurrences(a,N.firstChild);
6: endif

7: endif

8: if (N.nextSibling 6= NULL) then
9: F indF irstOccurrences(a,N.nextSibling);
10: endif

}

Figure 8: FOF Algorithm

Intel Core 2 Duo 2.40GHz system with 4 GB of RAM run-
ning SuSe Linux version 9.3. Several parameters can be sup-
plied in order to produce datasets of varying characteristics
using the generator and they include:

• N is the number of unique symbols in Σ (i.e. |Σ|).

• D is the number of sequences to be generated.

• C is the average length of the sequences generated.

In order to accurately measure memory utilization of the
various algorithms, instrumentation code was added to each.
Let T = {ti, · · · , tn} be the set of n data types for which
the peak memory usage of the dynamic heap variables needs
to be measured. Let the size of data type ti (1 ≤ i ≤ n)
be si. For each data type ti ∈ T (1 ≤ i ≤ n), an integer
ci is injected into the code for the count of the number of
variables of type ti that have been allocated. Also, let P
represent the total peak heap memory usage. Whenever
in the mining program a variable of type ti is allocated,
the code ci ← ci + 1; P ← max(

∑n

i=1
ci · si, P ) is inserted.

Conversely, whenever a variable of type ti is deallocated, the
code ci ← ci − 1 is inserted to decrement ci. Thus, at the
end of execution, variable P will hold the total peak memory
usage.

38



a:2

c:2

c:1

a:1

c:1

a:1

c:1

FOF Q:

(i)

(ii)

Figure 9: FOF for (Da)a

Figure 10(a) presents a memory usage comparison among
the various algorithms, where N = 10, D = 1000, ξ = 0.005,
and C is varied from 10 to 30. The FOF algorithm is shown
to outperform the PLWAP-tree algorithm and more signif-
icantly the FLWAP-tree algorithm. The large difference in
peak memory usage between the FLWAP-tree and the FOF
algorithms, is mostly due to the creation of new projection
databases in the FLWAP-tree algorithm, which consumes
more memory space. Also, the FOF algorithm outperforms
even the PLWAP-tree algorithm, even though it does not
create additional projection databases. This is most likely
due to the increased size of tree nodes in the PLWAP-tree
(i.e. for added link pointers and position codes).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10  15  20  25  30

Pe
ak

 M
em

or
y 

U
sa

ge
 (

K
iB

)

Average Length of Sequences (C)

FLWAP
PLWAP

FOF

N = 10, D = 1000, ξ = 0.005

(a) Memory Usage Comparison

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 10  15  20  25  30

T
im

e 
(s

ec
)

Average Length of Sequences (C)

FLWAP
PLWAP

FOF

N = 10, D = 1000, ξ = 0.005

(b) Execution Time Comparison

Figure 10: Performance Comparison

The execution times of the differing algorithms was also
tested. To accurately measure execution time, code was
added to the original implementations, which calculates to-
tal execution time. Figure 10(b) shows an execution time
comparison, where N = 10, D = 1000, ξ = 0.005, and C is
varied from 10 to 30. Again, the FOF algorithm is shown to
outperform the FLWAP-tree and the PLWAP-tree in terms
of execution time. This time however, the FOF algorithm
outperformed the PLWAP-tree algorithm in a more signifi-
cant manner. This is due to the fact, that much time is spent
traversing the PLWAP-tree in search of first-occurrences.

5. CONCLUSIONS
We have presented a pattern-growth frequent sequential

pattern mining algorithm using a forest of first-occurrence
subtrees as the basic data structure for databases (including
projection databases). Our algorithm uses a simple list of
pointers to the first-occurrence subtrees and a simple algo-
rithm to find first-occurrences. The performance evaluation
reveals that this simple implementation of pattern-growth
mining, outperform both the PLWAP-tree and FLWAP-tree
mining algorithms, in both mining time and memory us-
age. In particular, our FOF mining algorithm is signifi-
cantly faster than the PLWAP-tree mining algorithm and
uses significantly less memory than the FLWAP-tree mining
algorithm.

6. REFERENCES
[1] Myra Spiliopoulou and Lukas C. Faulstich. WUM: A

tool for web utilization analysis. In Proceedings of
EDBT Workshop Web DB’98. Springer Verlag, LNCS
1590, 1998.

[2] Christie I. Ezeife and Yi Lu. Mining web log sequential
patterns with position coded pre-order linked wap-tree.
International Journal of Data Mining and Knowledge
Discovery, 10:5–38, 2005.

[3] Peiyi Tang, Markus P. Turkia, and Kyle A. Gallivan.
Mining web access patterns with first-occurrence linked
WAP-trees. In Proceedings of the 16th International
Conference on Software Engineering and Data
Engineering (SEDE’07), pages 247–252, Las Vegas,
USA, July 2007.

[4] Ramakrishnan Srikant and Rakesh Agrawal. Mining
sequential patterns: Generalizations and performance
improvements. In Proceedings of the International
Conference on Extending Database Technology, pages
3–17, 1996.

[5] Jian Pei, Jiawei Han, Behzad Mortazavi-asl, and Hua
Zhu. Mining access patterns efficiently from web logs.
In Proceedings of the 4th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD’00),
pages 396–407. Lecture Notes in Computer Science,
Vol. 1805, 2000.

[6] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent
patterns without candidate generation. In Proceedings
of the ACM SIGMOD International on Management of
Data, pages 1–12. ACM Press, 2000.

39




