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ABSTRACT
The mining of frequent sequential patterns has been a hot
and well studied area—under the broad umbrella of research
known as KDD (Knowledge Discovery and Data Mining)—
for well over a decade. Yet researchers are still uncovering
interesting problems, new algorithms, and ways to improve
upon existing methods. In this paper, we marry state-of-
the-art frequent sequential pattern mining algorithms (e.g.,
SPAM, FOF, PrefixSpan), data structures (e.g., aggregate
tree, bitmap), and other tried-and-true methods for candi-
date generation (e.g., apriori), in an attempt to derive a new
algorithm with the best qualities of the aforementioned al-
gorithms. In this paper, we disseminate the new algorithm
created, lessons learned, and future work to be done.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

General Terms
Algorithms, Design

Keywords
Projection Database, Frequent Patterns, Apriori, Pattern
Growth

1. INTRODUCTION
Mining frequent sequential patterns has attracted a signif-

icant amount of research. Popularity in this area is primarily
due to its large area of applicability, and that it is the first
(and hardest) of a two step process in mining association
rules. Ever since Agrawal and Srikant [1] introduced their
unique approach and seminal work on the subject of itemset
data mining, researchers have been able to use it as a spring-
board to solve the more general problem of mining frequent
sequential patterns. In [1], the authors introduced the al-
gorithms known as Apriori, AprioriTid, and AprioriHybrid
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(henceforth combined and referred to simply as apriori).
Later, other researchers developed what are now state-of-
the-art apriori-based algorithms such as GSP [7], SPAM [2],
and SPADE [9]; whose central aim was to reduce the time
and/or space complexities inherent in mining frequent se-
quential patterns (N.B. the time complexity of all known
algorithms is exponential). Apriori-based algorithms usu-
ally use a candidate “generate-and-test” type of approach,
which exploits the downward closure property: if frequent
itemset α is not frequent, then any superset of α must not
be frequent either.

Other algorithms have been proposed which do not follow
the traditional apriori-based approach, but instead follow a
pattern-growth based approach. Some of these algorithms
include PrefixSpan [5] and FreeSpan [3]. Pattern-growth
algorithms take a more incremental approach in generating
possible frequent sequences, and use what might be called
a divide-and-conquer approach. Pattern-growth algorithms
make projections of the database in an attempt to reduce
the search space.

Our motivation for this research, was an attempt to marry
state-of-the-art frequent sequential pattern mining algorithms
(e.g., SPAM, FOF, PrefixSpan), data structures (e.g., ag-
gregate tree, bitmap), and other tried-and-true methods for
candidate generation (e.g., apriori), in an attempt to de-
rive a new algorithm with the best qualities of the afore-
mentioned algorithms. For candidate generation we chose
an apriori-based method, because of its seemingly optimal
nature. Of course, we must extend this to frequent sequen-
tial pattern mining, which can be seen as mining frequent
sequential itemsets. We also chose the FOF [6] algorithm
for its overall pattern-growth style mining method and ag-
gregate tree data structure similar to the FP-tree [4]. The
FOF algorithm makes pseudo-projections of the database,
by pointing to subtrees within an aggregate tree represent-
ing the sequence database. Lastly, SPAM’s idea of using a
bitmap to represent each itemset was used.

The rest of the paper is broken down as follows: Section 2
and Section 3 disseminates some key concepts and provides a
problem statement for mining frequent sequential patterns;
Section 4 presents the new algorithm; and finally, Section 5
discusses some future work and concludes the paper.

2. FREQUENT SEQUENTIAL PATTERN
MINING

Let I = {i1, i2, . . . , in} be a set of items. An itemset α is a
subset of I. A sequence s is an ordered list of itemsets that
is denoted as 〈s1, s2, . . . , sj〉, where each sk is an itemset©2009 ACM 978-1-60558-421-8/09/03 ...$10.00 



and 1 ≤ k ≤ j (j is called the length of the sequence). A
sequence A = 〈α1, α2, . . . , αn〉 is a subsequence of another
sequence B = 〈β1, β2, . . . , βm〉, denoted as A v B, iff n ≤ m
and there exist integers 1 ≤ k1 < k2 < · · · < kn ≤ m
such that α1 ⊆ βk1 , α2 ⊆ βk2 , · · · , αn ⊆ βkn . A sequence
database S contains a set of tuples 〈sid, s〉, where sid is a
unique identifier for the sequence and s is a sequence. For
example, (1) shows a sample database to be used throughout
this paper (minus the sids)1:

S = {〈ac, ab, c〉 , 〈ac, ab, a〉 , 〈c, abc, c〉 , 〈c, abc, a〉} (1)

A sequential pattern is also a sequence. The support of
sequential pattern p in database S is defined as:

SupportS(p) = |{〈sid, s〉 | 〈sid, s〉 ∈ S ∧ p v s}| .

Given a positive integer η between 0 and |S|, known as the
support threshold, the sequential pattern p is considered fre-
quent iff SupportS(p) ≥ η. Therefore, given a sequence
database S and support threshold η, the problem of mining
frequent sequential patterns is to find all sequential patterns
whose support in database S is greater than or equal to η.

3. PATTERN GROWTH AND APRIORI
FUNDAMENTALS

All pattern-growth algorithms are based on the fundamen-
tal principle of conditional searching. In essence, pattern-
growth algorithms find frequent sequential patterns by travers-
ing the search space tree in the depth-first manner, and con-
tinuously creating projections of the original database in an
attempt to reduce the size of the database. A formal frame-
work for pattern-growth algorithms for mining frequent se-
quential patterns with singleton itemsets was presented in
[8]. We briefly extend it for general sequential patterns as
follows. Given an itemset α and a sequence s that sup-
ports 〈α〉 (i.e., 〈α〉 v s), the α-prefix of s is the prefix of
s, which includes the left most itemset in the sequence, to
the first itemset that contains α inclusive; the first itemset
that contains α is known as the first-occurrence of α. For
example, the bc-prefix of sequence 〈b, bcd, ab〉 is 〈b, bcd〉 and
itemset bcd is the first-occurrence of bc. The α-projection
of s is what is left after the α-prefix is removed. In the
example above, the bc-projection of sequence 〈b, bcd, ab〉 is
〈ab〉. Note that if α is only contained in the last itemset of
s, the α-prefix is s itself and the α-projection is the empty
sequence 〈〉. For example, the a-projection of 〈b, bcd, ab〉 is
〈〉. Given a sequence database S and an itemset α ⊆ I, the
α-projection database of S, denoted as Sα, is the multi-set of
α-projections of the sequences in S that support 〈α〉. That
is,

Sa = {α-projection of s | 〈α〉 v s ∧ s ∈ S}
For example, the ac-projection database of the sequence
database in (1) would be Sα = {〈ab, c〉 , 〈ab, a〉 , 〈c〉 , 〈a〉}.
One can prove that, given an itemset α ⊆ I and sequence
database S, the support of sequential pattern p (including
the empty pattern 〈〉) in the α-projection database Sα is
equal to the support of pattern 〈α, p〉2 in the original data-
1All itemsets are represented by a string of the items in
their lexicographical order. For example itemset {a, b, c} is
written as abc.
2If sequential pattern p is 〈b1, · · · , bn〉, 〈α, p〉 is the pattern
with α as the first itemset followed by the sequence of item-
sets of p (i.e., by 〈α, p〉 we mean 〈α, b1, · · · , bn〉).

base S. That, is

SupportSα(p) = SupportS(〈α, p〉).

Based on this, the set of all non-empty frequent sequential
patterns can be found by calling the recursive function in
Figure 1 with Pattern-Grow(〈〉, S, η) 3.

The algorithm in Figure 1, however, does not take ad-
vantage of the downward closure property of frequent se-
quential patterns. That is, if a sequential pattern p is not
frequent in the database S (i.e., SupportS(p) < η), then any
super-sequence p′ w p will not be frequent either, because
SupportS(p′) ≤ SupportS(p) < η. In particular, if single-
itemset sequential pattern 〈α〉 is not frequent in S, any 〈α′〉
such that α′ ⊇ α is not frequent either, because 〈α〉 v 〈α′〉.
In other words, if we know that SupportS(〈α〉) < η, we do
not need to calculate SupportS(〈α′〉). To prune away these
infrequent single-itemset sequences 〈α′〉, we extend the ab-
stract algorithm in Figure 1 with apriori (downward clo-
sure) pruning as shown in Figure 2. The Apriori-Gen func-

function Pattern-Grow(pattern q, database S, int η) {
F ← ∅;
for each α ∈ P(I)− {∅} do

if SupportS(〈α〉) ≥ η then
F ← F ∪ {〈q, α〉};
Let Sα be the α-projection database of S;
F ← F ∪ Pattern-Grow(〈q, α〉 , Sα, η);

endif
endfor
return F ;

}

Figure 1: Abstract Pattern-Growth Mining Algo-
rithm

tion called in line 7 roughly uses the same method of candi-
date generation and pruning as can be found in the original
apriori-gen algorithm presented in [1]—with the exception
of bitmaps being used to represent itemsets. The Apriori-
Gen algorithm is summarized in Figure 4. The algorithm in
Figure 2 can be regarded as the marriage of pattern-growth
mining and apriori (pruning and candidate generation) tech-
niques.

4. HYBRIDMINE ALGORITHM
In this section, we present our new algorithmHybridMine

and its constituent data structures. Our new algorithm is an
implementation of the abstract Pattern-Grow-Apriori min-
ing algorithm we formulated in Figure 2. In that abstract
algorithm, the marriage of pattern-growth and apriori-based
methods are manifest.

4.1 Data Structures
Our new algorithm uses an implementation of what is

known as an aggregate tree (similar to the FOF algorithm4).

3Note that P(I) refers to the powerset of I. Also note that if
sequential pattern q is 〈b1, · · · , bn〉, 〈q, α〉 is 〈b1, · · · , bn, α〉.
If q is empty sequence 〈〉, 〈q, α〉 is 〈α〉.
4The original FOF algorithm was developed for a special
case of frequent sequential pattern mining, in which each
itemset in a sequence is a singleton. Thus, we extend the
aggregate tree to store at each node an itemset.



function Pattern-Grow-Apriori(pattern q, database S, int η) {
F ← ∅;
C1 ← I;
for i← 1 to |I| do

if Ci 6= ∅ do
if i > 1 then

7: Ci ← Apriori-Gen(Ci−1);
endif
C′i ← ∅;
for each α ∈ Ci do

if SupportS(〈α〉) ≥ η then
F ← F ∪ {〈q, α〉};
Let Sα be the α-projection database of S;
F ← F ∪ Pattern-Grow-Apriori(〈q, α〉 , Sα, η);
C′i ← C′i ∪ {α};

endif
endfor
Ci ← C′i;

endif
endfor
return F ;

}

Figure 2: Abstract Pattern-Growth-Apriori Mining
Algorithm

The aggregate tree of the original database can be con-
structed by entering each sequence in S into the initial tree,
which has only one root node pointed to by a pointer current-
node. For a sequence A = 〈α1, α2, . . . , αn〉 the construction
enters each αi using the following algorithm. If current-
node has a child with label αi, increase the count of that
child and make current-node point to that child. Otherwise,
create a new child node with label αi and count 1, and make
current-node point to this new child node. Figure 3 shows
the aggregate tree of the original example sequence database
in (1). The label of each node is represented by a bitmap of
n bits, one for each item in I = {i1, i2, . . . , in}. If item ij is
resident within the itemset of the label, the jth element of
the bitmap is set to one.

The new algorithm also uses the FOF (First-Occurrence
Forests) data structure to represent projection databases.
A FOF is simply a list of the pointers to mutually exclusive
nodes within the aggregate tree. Thus, collectively the FOF
structure can be seen as representing a forest of aggregate
trees. After the aggregate tree of the original database is
built, an initial FOF structure it created, which only con-
tains one pointer to the root to the original aggregate tree.
If a database S (be it the original or a projection) is rep-

resented by a forest of aggregate trees, the task of counting
the support of 〈α〉 for an itemset α and finding its projec-
tion, amounts to finding the so-called first-occurrences of the
itemset in the forest. In particular, a node in an aggregate
tree is a first-occurrence of itemset α if α is a subset of its
label l, α ⊆ l, and α is not a subset of any of its ancestor
node’s labels. For example, the aggregate tree in Figure 3
has two first-occurrences of c: ac:2 in the left subtree and
c:2 in the right subtree. All the other nodes which contain c
(i.e., c is a subset of) are not first-occurrences, because they
are descendants of the first-occurrences of c. If the first-
occurrences of an itemset α are found within the aggregate
trees of S, the sum of the counts of those nodes effectively
computes the support of 〈α〉 within S (i.e., SupportS(〈α〉)).
For example, the first-occurrences of the itemset c are shown

ε:4

ac:2

ab:2

c:1 a:1

c:2

abc:2

c:1 a:1

(i)

(ii)

Figure 3: Aggregate Tree Example

function Apriori-Gen (itemsets Ci−1) {
insert into Ci
select p.item1, p.item2, . . . , p.itemi−1, q.itemi−1

from Ci−1 p , Ci−1 q
where p.item1 = q.item1, . . . p.itemi−2 = q.itemi−2,

p.itemi−1 < q.itemi−1;

forall itemsets c ∈ Ci
forall (i− 1) subsets s of c do

if (s /∈ Ci−1) then
delete c from Ci;

return Ci;
}

Figure 4: Apriori-Gen

in region (i) of Figure 3 (i.e., nodes ac:2 and c:2) and thus
has a support of 2+2 = 4. Moreover, the subtrees rooted at
the children of all the first-occurrences of α form the forest of
aggregate trees representing the α-projection of S (i.e., Sα).
In the example in Figure 3, the c-projection is therefore the
forest shown in region (ii).

Because itemsets are implemented as bitmap data struc-
tures, found in each node of the aggregate tree, we can find
first-occurrences very easily using fast bit-wise operations.
For example, to find out whether an arbitrary Bitmap Map2
supports another Bitmap Map1 (i.e., Map1 ⊆ Map2), we
simply perform the following bit-wise operation/test:

¬(¬Map1 ∨ (Map2 ∧Map1)) ≡ 0

If the above statement is true, then Map2 does indeed sup-
port Map1, and a first-occurrence of Map1 has been found.

4.2 Hybrid Mining Algorithm
Aggregating all the algorithms and data structures dis-

seminated previously, the new HybridMine algorithm is
presented in Figures 5 and 45.

Within the HybridMine algorithm, both argument S and
variable T are of type FOF (i.e., a list of pointers to first-
occurrence aggregate trees). Ci (i = 1, 2, . . .) are the candi-

5The algorithm in Figure 4 is based on the original Apriori
algorithm by Agrawal and Srikant, and maintains some of
its SQL syntax for brevity.



function HybridMine(pattern q, database S, int η) {
Q← ∅;
C1 ← I;
for i← 1 to |I| do

if ((i > 1 AND Ci−1 is not empty) OR i = 1) then
if i > 1 then
Ci ← Apriori-Gen(Ci−1);

endif
for p← 1 to Ci.Size() do

Clear T .
11: for each node s in the FOF list S do
12: for each child c of s

Find the set of first-occurrences F of Ci,p
within the subtree rooted at c;

for each first-occurrence f in F
Push the pointer to f onto list T ;
T.Count = T.Count+ f.Count;

endfor
endfor

endfor
if (T.Count ≥ η) then
Q← Q ∪ {〈q, Ci,p〉};
Q← Q ∪HybridMine(〈q, Ci,p〉, T, η);

else
Remove Ci,p from Ci;

endif
endfor

endif
endfor
return Q;
};

Figure 5: Hybrid Mining Algorithm

date sets of itemsets from I with i items. The Apriori-Gen
algorithm shown in Figure 4 generates the candidate item-
sets of size i from the itemsets of size i−1 in Ci−1 using the
apriori algorithm. Ci.Size() refers to the number of itemsets
in Ci (i.e. |Ci|). For each candidate itemset in Ci, denoted
as Ci,p (1 ≤ p ≤ Ci.Size()), the algorithm finds all the
first occurrences of Ci,p in database S. Remember all the
aggregate trees representing projection database S are the
subtrees rooted at the children of the nodes pointed by the
FOF structure S. The two nested for loops at lines 11 and
12 are simply to find all the first-occurrences F of Ci,p. T is
the FOF structure that is used to hold the first-occurrences
found, by pointing to them. T.Count is used to accumulate
the counts (stored in f.Count) of all these first-occurrences.
After all the first-occurrences are found and their counts ac-
cumulated, T.Count is the support of 〈Ci,p〉 in database S.
If T.Count ≥ η, we know that 〈Ci,p〉 is frequent in S and
the same function is called recursively using the projection
database represented by T with the grown prefix pattern
〈p, Ci,p〉. Otherwise, Ci,p is removed from Ci because it is
infrequent.

5. CONCLUSIONS AND FUTURE WORK
We have presented a new frequent sequential pattern min-

ing algorithm which combines the favorable attributes of sev-
eral other state-of-the-art algorithms. Some preliminary ex-
perimental results show that the new algorithm would most
likely outperform GSP and possibly FreeSpan. However, the
algorithm would in all likely hood not outperform SPAM,
PrefixSpan, or SPADE.

Our study of the algorithm points to one of the reasons

for this: the apriori algorithm’s large number of executions
during the mining process (each time a frequent pattern is
found, the apriori algorithm is called again). In a worst-case
scenario, in which all sequential patterns are frequent and
all sequences are of the same length, the number of can-
didates generated would be

∑l
i=0(2|I| − 1)i, where l is the

length of the sequences. Of course, this is rarely the case,
yet the number of apriori calls can be quite high when us-
ing real-world datasets. The aforementioned problem has
enticed the formulation of new approaches to the problem.
Some of those might include using a similar mechanism for
generating new candidates as found in SPAM, which does
not use an apriori approach, but rather grows each sequence
incrementally. Another method found in SPAM is the pass-
ing of only frequently found itemsets to the next recursive
call, thus allowing for the pruning of potentially many more
infrequent sequences.
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