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ABSTRACT
This paper defines probabilistic support and probabilistic
frequent closed itemsets in uncertain databases for the first
time. It also proposes a probabilistic frequent closed itemset
mining (PFCIM) algorithm to mine probabilistic frequent
closed itemsets from uncertain databases.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining

General Terms
Theory, Algorithms, Management

Keywords
probabilistic frequent closed itemset mining, frequent item-
set mining, closure, data mining

1. INTRODUCTION
Broadly speaking, renewed interest in the field of mining

in uncertain databases has been motivated by the advent
of applications which lend themselves to that area. More
specifically, some modern applications are known to produce
incomplete or noisy data; one salient example being a sensor
network. Further, privacy-preserving data mining applica-
tions in particular have a need for frequent itemset mining
algorithms that operate within an uncertain data context.

Starting with the work of Agrawal et al. [2], mining fre-
quent itemsets has been extensively (and sometimes seem-
ingly exhaustively) studied; that research, however, has fo-
cused on so-called certain databases (i.e., where each trans-
action and the items it contains is known for sure). This con-
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trasts sharply with research into mining for frequent item-
sets in databases that contain transactions or items that
have existential probabilities, which has been studied in [6,
4, 3, 1]. Put another way: “All previous studies ... assume a
data model under which transactions capture doubtless facts
about the items that are contained in each transaction.” [4]
Thus, in these so-called uncertain databases, one can not be
certain about whether an itemset is frequent or not, and as
to the makeup of a particular database. All we can can do
is estimate if an itemset is frequent or not within a certain
confidence.

There have been works on mining frequent itemsets from
uncertain databases. Chui at et al. [4] uses the expected
support of an itemset from an uncertain database to define
whether it is frequent or not. Itemsets are considered fre-
quent if its expected support exceeds the minimum support
threshold minsup. As indicated by [3], a frequent itemset
based the expected support cannot express how close the
estimate is that it is frequent. Bernecker et al. [3] defined
the support distribution of an itemset and used it to define
the frequentness probability as the sum of the probabilities
of the support equal to or above the minimum support min-
sup. Thus, the frequent itemsets with conference threshold
τ are the itemsets whose frequentness probabilities exceeds
τ .

In traditional (certain database) data mining, the frequent
closed itemsets are widely seen as being a more compact
and lossless representation of frequent itemsets. A frequent
itemset is closed if it is the Galois closure of itself or if it has
no super itemset with the same support.

Hitherto, no researchers have proposed a method for min-
ing frequent closed itemsets in uncertain databases. In fact,
no researchers have defined the probabilistic support of an
itemset accurately and closed itemsets in uncertain data-
bases. In this paper, we use maximum frequentness to define
the probabilistic support of an itemset and use the proba-
bilistic support to define closed itemsets in uncertain data-
bases for the first time. We also proposed an algorithm
(PFCIM) to mine probabilistic frequent closed itemsets in
uncertain databases, by extending the probabilistic frequent
itemset mining (PFIM) algorithm from [3].

The rest of this paper is laid out as follows: Section 2 will
disseminate some necessary concepts and notations for the
full understanding of later material. In Section 3, we define
the probabilistic support of an itemset based on maximum
frequentness and then probabilistic frequent closed itemsets
in uncertain databases. Section 4 describes the probabilistic
frequent closed itemset mining (PFCIM) algorithm. Section 5



provides an experimental evaluation of the algorithm; finally,
Section 6 concludes the paper.

2. PRELIMINARIES

2.1 Uncertain Data Model
The uncertain data model used in this paper assumes the

presence of a set of items I = {x1, x2, . . . , xm} and a set of
transactions T = {t1, t2, . . . , tn}. Each item x ∈ I has an
accompanying existential probability of being in transactions
tj , denoted as P (x ∈ tj) ∈ [0, 1]. The item x with 0 < P (x ∈
tj) < 1 is called an uncertain item in tj . The zero existential
probability of item x in tj , P (x ∈ tj) = 0, simply means that
x does not exist in tj . Item x with P (x ∈ tj) = 1 is contained
in tj with full certainty.

An uncertain database T over itemset I can be represented
by a n×m matrix M , where Mj,i is the existential probabil-
ity of i-th item xi in j-th transaction tj , Mj,i = P (xi ∈ tj).
If all the existential probabilities in M are either 1 or 0,
the database degenerates to a traditional certain database.
Thus, a certain database can be regarded as a special case
of uncertain database.

An example uncertain database is shown in Figure 1, where
I = {1, 2, 3} and there are three transactions T = {t1, t2, t3}.
In transaction tj , item x and its existential probability P (x ∈
tj) in it is represented as the tuple (x, P (x ∈ ti)). The items
with zero existential probability are not shown.

TID Itemset
t1 (1, 1.0), (3, 0.99)
t2 (2, 0.4), (3, 0.88)
t3 (1, 0.9), (2, 0.2), (3, 0.95)

Figure 1: Uncertain Database

In Figure 1, each transaction could uniquely identify a
loyal customer, and each uncertain item (i.e., 1, 2, 3) could
represent a particular store item and the probability of a cus-
tomer purchasing that item. Alternatively, each TID could
represent a patient and each item a disease and the proba-
bility of that patient being diagnosed with that disease.

An uncertain database defines a number of possible worlds
(possible certain databases). Since for each probability P (x ∈
tj), there exists a possible world that includes item x in
transaction tj and another that does not, there are total of
2|T |·|I| = 2n·m possible worlds. Assuming that the transac-
tions in the uncertain database are independent (customers’
purchase pattern are independent) and the existential prob-
abilities of the items in each transaction are also indepen-
dent (the probabilities of the items purchased by a customer
are independent), the probability of a possible word w, de-
noted as P (w), which is the joint probability of all its certain
transactions, is

P (w) =
∏

t∈T (w)

(
∏
x∈t

P (x ∈ t′) ·
∏
x/∈t

(1− P (x ∈ t′))) (1)

where T (w) is the set of certain transactions of world w, t a
certain transaction in T (w), t′ the corresponding uncertain
transaction in uncertain database T , and P (x ∈ t′) the exis-
tential probability of item x in the uncertain transaction t′.
It can be proved that

∑
w∈W P (w) = 1, where W is the set

of all 2|T |·|I| possible worlds. If the existential probabilities

P (x ∈ tj) are either 1 or 0 for all tj ∈ T and item x ∈ I
(i.e. T is a certain database), the probability of that possi-
ble world equal to T is 1 and all the other possible worlds
have zero probability.

2.2 Probabilistic Frequent Itemsets
The possible worlds and their probabilities are the founda-

tion of reasoning about the support of itemsets in uncertain
databases. Since each possible world w and its set of trans-
actions T (w) are certain, the support of each itemset X in
T (w) is well-defined and is the number of transactions in
T (w) that contains X, denoted as SupT (w)(X). Thus, the
probability of the support of X being i, denoted as Pi(X)
in the original uncertain database is

Pi(X) =
∑

w∈W,SupT (w)(X)=i

P (w) (2)

where W is the set of possible worlds. Therefore, an uncer-
tain database T defines a discrete probability distribution
of the support of each itemset X, Pi(X) (i = 0, 1, . . . , |T |),
according to (2).

Bernecker et. al. [3] proved that support probability dis-
tribution Pi(X) can be calculated without materializing all
the possible worlds by

Pi(X) =
∑

S⊆T,|S|=i

(
∏
t∈S

P (X ⊆ t)·
∏

t∈T−S

(1−P (X ⊆ t))) (3)

where T is the original uncertain database and P (X ⊆ t) is

P (X ⊆ t) =
∏
x∈X

P (x ∈ t)

All the work on frequent itemset mining in uncertain data-
bases prior to [3] used the expected support of the support

distribution Pi(X), E(X) =
∑|T |

i=0 i · Pi(X), to define fre-
quent itemsets as being those whose expected support ex-
ceeds the minimum support minsup.

Instead of using the expected support, Bernecker et. al.
[3] proposed to use frequentness probability to define prob-
abilistic frequent itemsets with a certain confidence. The
probability that the support of itemset X is at least i is

P≥i(X) =
∑|T |

k=i Pk(X). Thus, P≥minsup(X) is the probabil-
ity that itemset X is frequent and is called the frequentness
probability of X. In [3], the probabilistic frequent itemsets
with confidence τ are the itemsets whose frequentness prob-
ability P≥minsup(X) exceeds τ .

3. PROBABILISTIC FREQUENT CLOSED
ITEMSET MINING

Frequent itemset mining has two drawbacks: (1) there
are often too many frequent itemsets to report and digest
and (2) frequent itemsets mined do not have information
about their frequentness or support. Mining maximal fre-
quent itemsets can solve the first problem, but not the sec-
ond one. Only mining closed frequent itemsets solves both
problems.

In the certain database mining, an itemset X is closed if
and only if it is the Galois closure of itself, i.e. X = c(X).
Here c is the Galois closure operator defined as c = f ◦ g,
where g : I → T and f : T → I are the two functions defined
as follows. Given itemset X, g(X) is the set of transactions
that contain X, i.e. g(X) = {t ∈ T | X ⊆ t}. Given a set of



transactions Y ⊆ T , f(Y ) is the maximal itemset that are
contained in all transactions in Y , i.e. f(Y ) = {x ∈ I | ∀t ∈
Y, x ∈ t}. In other words, an itemset X is closed if and only
if f(g(X)) = X.

The support of an itemset X, SupT (X), in an certain
database T is the number of transactions in T that contain
X, i.e. SupT (X) = |g(X)|. We can prove that an itemset
X is closed if and only if it does not have any proper super
itemset with the same support, i.e. there is no itemset Y
such that X ⊂ Y and SupT (X) = SupT (Y ). Often, this
theorem is used as a second alternative definition for closed
itemsets.

3.1 Probabilistic Support of Itemsets
In uncertain database mining, we cannot use Galois clo-

sure to define a closed itemset, because the database T is
uncertain and functions g and f are not defined. However,
we may be able to use the second definition to define closed
itemset. The challenge is that for an uncertain database T ,
the support of an itemset X does not have a specific value. It
is rather a discrete random number with distribution Pi(X)
(i = 0, . . . , |T |) determined by (3). Bernecker et. al. [3] used

frequentness probability P≥minsup(X) =
∑|T |

k=minsup Pk(X),
the probability that the support of X is at least minsup, to
define probabilistic frequent itemsets with certain conference
τ to be the itemsets X such that P≥minsup(X) ≥ τ . But, the
probabilistic support of an itemset with a certain confidence
has never been defined, although the term of “probabilistic
support” appeared in [3].

Note that P≥i(X) =
∑|T |

k=i Pk(X) is a non-increasing mono-
tonous function of i, i.e. P≥j(X) ≤ P≥i(X) for j > i. In
this paper, we define the probabilistic support of itemset X
with confidence τ , denoted as SupT (X, τ), to be the largest
i such that P≥i(X) ≥ τ . Formally,

Definition 1. Given an itemset X, uncertain database
T, and confidence threshold τ , the probabilistic support of
X with confidence τ , denoted as SupT (X, τ), is defined as
follows:

SupT (X, τ) = argmaxi∈[0,|T |](P≥i(X) ≥ τ)

The probabilistic support SupT (X, τ) above is the largest
threshold, above which we can say about the support of X
in database T with confidence τ . In other words, it is the
maximum frequentness of itemset X with confidence τ , and
indicates how frequent—probabilistically—an itemset X is.

3.2 Probabilistic Frequent Closed Itemset
Bernecker et. al. [3] also proved that frequentness proba-

bility P≥minsup(X) =
∑|T |

k=minsup Pk(X) is anti-monotonic.

That is, for any Y ⊆ X, and any i, P≥i(X) ≤ P≥i(Y )
(Lemma 17 of [3]). Using the anti-monotonic property of
P≥i(X), We can prove the following anti-monotonic prop-
erty of the probabilistic support SupT (X, τ) as follows:

Lemma 1. For all itemsets Y ⊆ X in an uncertain data-
base T and any confidence τ , SupT (X, τ) ≤ SupT (Y, τ). In
other words, the probabilistic support with the same confi-
dence decreases as the itemset increases.

Proof. Suppose the contrary that SupT (X, τ) >
SupT (Y, τ). Let SupT (X, τ) and SupT (Y, τ) be k and j, re-
spectively, and we have k > j. Since SupT (X, τ) = k, we
have P≥k(X) ≥ τ according to Definition 1. Since Y ⊆ X,

we have P≥k(X) ≤ P≥k(Y ) according to the anti-monotonic
property of frequentness probability (Lemma 17 of [3]). Thus,
we have P≥k(Y ) ≥ τ . Since k > j and P≥k(Y ) ≥ τ , j is not
the largest i such that P≥i(Y ) ≥ τ . Therefore, SupT (Y, τ) is
not j according to Definition 1. We, thus, reached the con-
tradiction and SupT (X, τ) ≤ SupT (Y, τ) must be true.

Lemma 1 shows that the probabilistic support of item-
sets of uncertain databases, defined in Definition 1, has the
similar anti-monotonous property for the support of item-
sets in certain databases. This property allows us to define
probabilistic closed itemsets in uncertain databases, by fol-
lowing the second alternative definition of a closed itemset
in certain databases.

Definition 2. Given an uncertain database T and a con-
fidence threshold τ , an itemset X is probabilistically closed
with confidence τ if and only if there is no proper super item-
set Y ⊃ X that has the same probabilistic support with the
same confidence τ as X, i.e. with SupT (Y, τ) = SupT (X, τ).

Just as not all itemsets are frequent probabilistically, not
all probabilistic closed itemsets are frequent. We can define
in our term that an itemset X is probabilistic frequent with
respect to minimum support minsup and confidence τ if
and only if its probabilistic support, SupT (X, τ), is at least
minsup.

Definition 3. Given an uncertain database T , a mini-
mum support minsup between 0 and |T |, and a confidence
threshold τ between 0 and 1, an itemset X is probabilistically
frequent if and only its probabilistic support with confidence
τ exceeds minsup, i.e. SupT (X, τ) ≥ minsup.

In [3], frequent itemsets X are defined as those satisfy-
ing P≥minsup(X) ≥ τ . The following lemma shows that
P≥minsup(X) ≥ τ is actually equivalent to SupT (X, τ) ≥
minsup.

Lemma 2. Given an uncertain database T , a minimum
support minsup between 0 and |T |, a confidence threshold τ
between 0 and 1, and an itemset X, SupT (X, τ) ≥ minsup
if and only if P≥minsup(X) ≥ τ .

Proof. (⇒) Let SupT (X, τ) ≥ minsup be j. If
SupT (X, τ) ≥ minsup, then j ≥ minsup and also P≥j(X) ≥
τ (Definition 1). We have P≥j(X) =

∑|T |
k=j Pk(X) ≥ τ .

P≥minsup(X) can be divided as

P≥minsup(X) =
∑j

minsup Pk(X) +
∑|T |

j Pk(X) because j ≥
minsup. Since

∑j
minsup Pk(X) ≥ 0, we have P≥minsup(X) ≥∑|T |

j Pk(X) ≥ τ .

(⇐) Let P≥minsup(X) ≥ τ be true and SupT (X, τ) be j. As-
sume the contrary that j < minsup. Since P≥minsup(X) ≥
τ and j < minsup, SupT (X, τ) cannot be j according to
Definition 1. Thus, j ≥ minsup.

Therefore, our definition of frequent itemsets by Definition 3
is equivalent to the one in [3]. But, our definition is more
in line with the traditional frequent itemset definition for
certain databases.

3.3 PFCIM Problem Definition
Now, the probabilistic frequent closed itemset can be de-

fined as follows:



Definition 4. Given an uncertain database T , a mini-
mum support minsup between 0 and |T |, a confidence thresh-
old τ between 0 and 1, X is a probabilistic frequent closed
itemset with confidence τ if and only (1) there is no proper
super itemset Y ⊃ X such that SupT (Y, τ) = SupT (X, τ)
and (2) SupT (X, τ) ≥ minsup.

The problem of probabilistic frequent closed itemsets min-
ing (PFCIM) in uncertain databases can be defined as fol-
lows:

Definition 5. Given an uncertain database T , the min-
imum support minsup between 0 and |T |, and confidence
threshold τ between 0 and 1, the problem of probabilistic fre-
quent closed itemset mining (PFCIM) is to find all the item-
set X such that (1) there is no proper super itemset Y ⊃ X
such that SupT (Y, τ) = SupT (X, τ) and (2) SupT (X, τ) ≥
minsup.

4. MINING ALGORITHM
As shown previously, P≥i(X) is defined as

∑|T |
k=i Pk(X)

and Pi(X) can be calculated using Equation (3).
Bernecker et al. [3] shows that P≥i(X) can also be calcu-

lated as:

P≥i(X) =
∑

S⊆T,|S|≥i

(
∏
t∈S

P (X ⊆ t) ·
∏

t∈T−S

(1− P (X ⊆ t)))

(4)
The complexity of computing P≥i(X) is exponential with
respect to the size of database |T |.

In [3], Bernecker et al. use a dynamic programming scheme
to calculate P≥i(X) in linear time O(|T |) by calculating
P≥i,j(X), which is P≥i(X) from the first j transactions of T
only. In other words, P≥i(X) = P≥i,|T |(X). The recursive
equation for P≥i,j(X) is

P≥i,j(X) = P≥i−1,j−1(X) · P (X ⊆ tj)
+ P≥i,j−1(X) · (1− P (X ⊆ tj)) (5)

where P≥0,j = 1 ∀.0 ≤ j ≤ |T |, P≥i,j = 0 ∀.i > j

Figure 2(a) taken from [3] illustrates the aforementioned
dynamic programming scheme used in calculating
P≥minsup,|T |(X) for mining probabilistic frequent itemsets.

For mining probabilistic frequent closed itemsets, we need
to find the probabilistic support SupT (X, τ). This means
that after we find P≥minsup,|T |(X) ≥ τ , we need to continue
calculating P≥i,|T |(X) for i > minsup as long as
P≥i−1,|T |(X) ≥ τ , until it is less than τ . In Figure 2(b), we
see an example where the computation is run until
P≥minsup+2,|T |(X) < τ is reached for the first time, which
makes SupT (X, τ) = minsup+ 1.

Figure 3 shows our function ProbSup() for calculating
the probabilistic support of an itemset using the dynamic
programming scheme shown in Figure 2(b). An itemset
X has two fields: 1) an integer X.MS to hold the prob-
abilistic support of the itemset, Sup|T |(X, τ), and 2) an ar-
ray X.P [1 . . . |T |] of floats, where X.P [j] is used to store
P (X ⊆ tj).

Recall that P (X ⊆ t) =
∏

x∈X P (x ∈ t). Therefore, we
have

P ((X ∪ {b}) ⊆ tj) = P (X ⊆ tj) · P (b ∈ tj)

0 	  	  

0

0

1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	  	  

0 1 2 	  	  
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# Trans. j 

minsup 

start of computation with P≥1,1(X) 
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P≥0,j(X) = 1 

|T| 

(a) Calculation of P≥minsup,|T |(X) [3]
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0 	  	  

0
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0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	  	  
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Support i 

# Trans. j 
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P≥minsup,|T|(X) ≥ τ	


|T| 

P≥minsup+2,|T|(X) < τ	
P≥minsup+1,|T|(X) ≥ τ	


(b) Calculation of SupT (X, τ)

Figure 2: Dynamic Programming Schemes

We explore this fact and store P (X ⊆ tj) in X.P [j] so that
when we need to calculate P ((X ∪ {b}), we simply retrieve
X.P [j] and multiply it with P (b ∈ tj) instead of calculating
the product

∏
x∈X P (x ∈ t) directly; this speeds up the

computation. Thus, the dynamic programming Equation 5
can be re-formulated as:

P≥i,j(X ∪ {b}) = P≥i−1,j−1(X ∪ {b}) ·
P (X ⊆ tj) · P (b ∈ tj)

+ P≥i,j−1(X ∪ {b}) ·
(1− P (X ⊆ tj) · P (b ∈ tj)) (6)

In Figure 3, the uncertain database is stored in a two-
dimensional T , where the existential probability for item
x ∈ I in transaction tj ∈ T , P (x ∈ tj), is stored in T [j][x]
(items are represented as natural numbers and thus used as
an index directly).

The probabilistic support of itemset X is found by calling
ProbSup(X, tau, minsup, L), where L is a set that contains
the itemset of (|X|−1)-prefix of X (|X| > 1). The if state-
ment at line 2 of Figure 3, retrieves this prefix using prefix
function (not shown) and assigns it to Y . The purpose is to
have access to Y.P [. . .]. The next two nested loops i and j
are used to compute P≥i,j(X) saved in matrix[i][j]. Take
note that values of j that are greater than |T | −minsup+ i
and |T | need not be visited. Also note that for simplicity,
the entire matrix (possibly large) is shown, but when im-
plementing, only rows i and i − 1 are necessary—greatly
reducing the memory burden. Lines 11–17 simply initialize
the first row of the matrix in Figure 2(b) to all 1’s or initial-
ize a cell j−1 to 0 if i = 0. Next, x is the last item of itemset
X—obtained by calling the postfix function (not shown). x
can be seen as being equivalent to b in Equation 6. At line 19
the whole of Equation 6 is performed to calculate P≥i,j(X).



Within this calculation, one can see the reuse of previous
calculations of existential probability of an itemset occur-
ring in transaction tj , by way of referencing Y.P [j]. Next,
at line 20, if i = 1 or j = |T | −minsup+ i, then the proba-
bility of itemset X occurring in transaction tj (P (X ⊆ tj))
is saved for itemsets of length k + 1. Finally, at line 24, if
matrix[i][j − 1] < τ—meaning that the itemset will not be
frequent and there is no need continuing computation—and
i 6= 0, then i − 11 is returned. Otherwise, the computation
continues until this condition is meet, or execution flows out
of all loops and line 28 is reached—at which point i− 1 will
be returned.

function ProbSup(itemset X, float τ ,
int minsup, optional L← NULL)

begin
1. itemset Y ;
2. if L 6= NULL then

Y ← prefix(X,L);
else
Y.P [1 . . . |T |]← 1;

endif
int i;

8. for (i← 0; i ≤ |T |; i+ +) do
int j;

10. for (j ← i; j ≤ |T | −minsup+ i ∧ j ≤ |T |; j + +) do
11. if i ≡ 0 then

matrix[i][j]← 1;
continue;

endif
if j ≡ i then
matrix[i][j − 1]← 0;

17. endif
18. item x← postfix(X);
19. matrix[i][j]← matrix[i− 1][j − 1] ∗ Y.P [j] ∗ T [j][x]+

matrix[i][j − 1] ∗ (1− (Y.P [j] ∗ T [j][x]));
20. if i = 1 ∨ j = |T | −minsup+ i then

X.P [j]← Y.P [j] ∗ T [j][x];
endif

endfor
24. if matrix[i][j − 1] < τ ∧ i 6= 0 then

return i− 1;
endif

endfor
28.return i− 1;
end

Figure 3: Probabilistic Support Function

Our Probabilistic Frequent Closed Itemset Mining
(PFCIM) algorithm uses an apriori-style breadth-first tech-
nique for its mining. That is, all probabilistic frequent closed
itemsets of length 1 are discovered first, followed by those of
length 2, and so on.

The closure checking (to determine if a frequent item is
closed or not) is based on the property that a k-itemset
(itemset of length k) is closed if none of its k + 1-super-
itemsets has the same support.

Property 1. Given a probabilistic frequent itemset X of
length k, if all Y ⊃ X of length k + 1 have a probability
support not equal to X (i.e., SupT (X, τ) 6= SupT (Y, τ), then
X is a probabilistic frequent closed itemset.

1i− 1 is returned because i is incremented by the for loop
before exiting it.

Proof. Let Z be a superset of X of length greater than
k + 1, i.e. Z ⊃ X and |Z| > k + 1. Then, there must
be an itemset Y of length k + 1 such that Z ⊃ Y ⊃ X.
According to the anti-monotonous property (Lemma 1), we
have SupT (Z, τ) ≤ SupT (Y, τ) ≤ SupT (X, τ). Since we
know SupT (Y, τ) 6= SupT (X, τ), we have SupT (Z, τ) ≤
SupT (Y, τ) < SupT (X, τ). Thus, SupT (Z, τ) < SupT (X, τ).
Therefore, X is an closed itemset according to Definition 2.

Using this property, the algorithm need only keep itemsets
of length k and k + 1, when checking for closure.

The pseudocode for the PFCIM algorithm is shown in Fig-
ure 4. The algorithm begins by placing all items (singletons)
in the set C (line 1). Next, at line 2, all itemsets X that are
in set C and also have a SupT (X, τ) value greater than or
equal to minsup, are placed in set L. At line 3, L is passed
to the Apriori-Gen algorithm (from [2]), returning itemset
candidates of size 2 which are placed in the set C′. Line 4
begins a while loop that continues until C′ is empty. Start-
ing at line 5 and ending at line 11, each itemset X in C′ is
checked to see if it is a probabilistic frequent itemset or not.
This entails calling the function ProbSup, which returns the
itemset’s probabilistic support value. If MS is greater than
or equal to minsup, the itemset is frequent, SupT (X, τ) is
assigned to X.MS, and X is added to the set L′. Next (lines
12 through 23), each itemset X of length k− 1 (found in set
L) is compared to each itemset of length k (found in L′). If
no superset of X in L is found in L′, which has the same sup-
port of X, X is outputted as a closed probabilistic frequent
itemset. Finally, at line 24, L is assigned the values of L′,
and then (line 25) Apriori-Gen is called again to generate
candidates of length k + 1, which are assigned to C′.

5. EXPERIMENTAL EVALUATION
The PFCIM algorithm was put through a series of experi-

mental evaluations, which provide some idea of its computa-
tion costs. These tests were performed using well-known and
available datasets2, and were evaluated varying both of the
independent variables minsup and τ . All datasets used were
found at the Frequent Itemset Mining Dataset Repository
<http://fimi.cs.helsinki.fi/data/>. This dataset repository
contains well-known datasets that have been converted into
itemset transactions.

Each of the aforementioned datasets (even through they
have been converted into itemset transactions) are still cer-
tain datasets. This transformation includes the determina-
tion of whether of not an item is present or not in the certain
dataset, and based on that generating a random number r
based on the beta distribution (or 1 − r if the item is not
present)3.

We believe the aforementioned database transformation
procedure, produces an uncertain database from a certain
one, that more resembles to a real-world uncertain dataset.
Figure 5(a) shows effect of τ on the execution time of the
algorithm. One can see that execution time is linear with
respect to τ . In Figure 5(b) the effect of minsup on the ex-
ecution time of the algorithm is shown. For each dataset a
minsup value was chosen relative to the number of transac-
tions in it that would produce a minsup/|T | value equal to

2More information about the accidents dataset can be found
in [5].
3Details of this transformation can be found in the technical
report of this paper mentioned in the conclusion



function PFCIM(int minsup, float τ)
begin
1. C ← {X|X ∈ I};
2. L← {X|X ∈ C∧ ProbSup(X, τ,minsup) ≥ minsup};
3. C′ ← Apriori-Gen(L); // X.MS is set for all X ∈ L
4. while C′ 6= ∅ do
5. foreach X ∈ C′ do

MS ← ProbSup(X, τ,minsup, L);
if MS ≥ minsup then
X.MS ←MS;
L′ ← L′ ∪X;

endif
11. endfor
12. foreach s ∈ L do

flag ← true;
foreach t ∈ L′ do

if s ⊂ t ∧ s.MS ≡ t.MS then
flag ← false;
break;

endif
endfor
if flag then

- Output s as a probabilistic frequent
closed itemset;

endif
23. endfor
24. L← L′;
25. C′ ← Apriori-Gen(L);

endwhile
end

function Apriori-Gen(L)
begin

int j ← |L[1]|; //j is the size of the elements in L
foreach p, q ∈ L such that
p1...(j−1) ≡ q1...(j−1) ∧ pj < qj do
c← p1...(j−1)pjqj ;
if all s ⊂ c such that |s| ≡ j, s ∈ L then
C ← C ∪ {c};

endif
endfor
return C;

end

Figure 4: PFCIM Algorithm

the percentages shown. The results show that the execution
time is exponential with respect to minsup.

6. CONCLUSIONS
In this paper, we defined probabilistic support and fre-

quent closed itemsets based on it in uncertain databases
for the first time. In addition, we proposed a probabilis-
tic frequent closed itemset mining (PFCIM) algorithm to
mine probabilistic frequent closed itemsets from uncertain
databases. An experimental evaluation was given that dis-
plays some of the algorithm’s execution complexities; which
were performed on a variety of well-known real and synthetic
datasets. A more detailed version of this paper can be found
in the technical report of the same title at
<http://www.erichpeterson.com/publications/>.
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