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ABSTRACT
In recent years, the concept of and algorithm for mining
probabilistic frequent itemsets (PFIs) in uncertain databases,
based on possible worlds semantics and a dynamic program-
ming approach for frequency calculations, has been pro-
posed. The frequentness of a given itemset in this scheme
can be characterized by the Poisson binomial distribution.
Further and more recently, others have extended those con-
cepts to mine for probabilistic frequent closed itemsets (PF-
CIs), in an attempt to reduce the number and redundancy
of output. In addition, work has been done to accelerate
the computation of PFIs through approximation, to mine
approximate probabilistic frequent itemsets (A-PFIs), based
on the fact that the Poisson distribution can closely approxi-
mate the Poisson binomial distribution—especially when the
size of the database is large. In this paper, we introduce the
concept of and an algorithm for mining approximate prob-
abilistic frequent closed itemsets (A-PFCIs). A new mining
algorithm for mining such concepts is introduced and called
A-PFCIM. It is shown through an experimental evaluation
that mining for A-PFCIs can be orders of magnitude faster
than mining for traditional PFCIs.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; G.3 [Probability and Statistics]: Distribu-
tion functions

General Terms
Algorithms, Design, Performance

∗This work was supported in part by the National Science
Foundation under Grant CRI CNS-0855248, Grant EPS-
0701890, Grant EPS-0918970, Grant MRI CNS-0619069,
and OISE-0729792.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACMSE’12, March 29–31, 2012, Tuscaloosa, AL USA.
Copyright 2012 ACM 978-1-4503-1203-5/12/03 ...$10.00.

Keywords
Probabilistic frequent closed itemset mining, uncertain databases,
probabilistic support of itemset, approximation of poisson
binomial distribution

1. INTRODUCTION
In light of recent applications, such as location-based sys-

tems and wireless sensor networks—where the data may be
inherently uncertain—or, applications where the attributes
can have probabilities associated with them, such as the
probability a drug had an effect on a pathogen in a patient,
new algorithms have been proposed that mine these uncer-
tain databases for so-called probabilistic frequent itemsets
(PFIs). Unlike traditional itemset mining, where each item
is known for certain to either occur or not within a certain
transaction, items in probabilistic databases have existen-
tial probabilities associated with them, which denote the
probability that the item will occur within the uncertain
transaction.

Previous attempts to mine frequent itemsets from uncer-
tain databases made use of an itemset’s expected support
[4, 5]. However, the aforementioned methods, as pointed
out in [2], cannot adequately express the frequentness of an
itemset in an uncertain database. Thus, in [2], Bernecker
et al. devised an exact method to mine for PFIs, using an
itemset’s support probability mass function (pmf), which
follows a Poisson binomial distribution. That method used
a dynamic programming approach to calculate an itemset’s
support pmf, and an Apriori enumeration scheme. Later in
[1], the same team devised a method that used a genera-
tion function method for calculating the support pmf, and
pattern-growth enumeration.

Other researchers [3, 8] however have proposed methods
for approximating the Poisson binomial distribution. More
specifically, Wang et al. [8], proposed a method that uses
the Poisson distribution to approximate the Poisson bino-
mial distribution, and thus were able to mine approximate
probabilistic frequent itemsets (A-PFIs). The researchers
were able to show that the speed of their devised method
for calculating the support pmf of an itemset was orders
of magnitude faster than the exact dynamic programming
method. In addition, they showed the accuracy of such a
method was very good through experimental evaluations.

It is a well-known problem in the area of frequent itemset
mining, that the size of output can be very large, especially
when user-defined thresholds are set low. It is this problem
that has led to the development of algorithms which mine



a specific subset of all frequent itemsets, that results in a
less redundant, and therefore, more succinct output. In [7],
Tang et al. proposed an algorithm for mining probabilis-
tic frequent closed itemsets (PFCIs), which mined for only
those probabilistic frequent itemsets I, such that there is no
other I ′ ⊃ I where the probabilistic support of I does not
equal that of I ′. The algorithm disseminated to mine such
concepts, like that of Bernecker et al. [2], uses a dynamic
programming approach to calculate the support pmf of a
given itemset, as well as Apriori candidate enumeration.

In this paper, preliminary material is presented (Section
2), including the concepts of the uncertain data model (un-
der the assumption of possible world semantics) are exam-
ined and related to the Poisson binomial distribution (Sec-
tion 2.1), as well as, how these concepts compare and con-
trast with traditional itemset mining. Next, the concepts of
probabilistic frequent itemsets (PFIs), Section 2.2, and prob-
abilistic frequent closed itemsets (PFCIs), Section 2.3, are
defined. Then, in Section 3, the new concept of approximate
probabilistic frequent closed itemsets (A-PFCIs) are intro-
duced and defined, as well as, an algorithm to mine for these
newly defined concepts. This new algorithm (A-PFCIM), is
shown to be orders of magnitude faster than the exact dy-
namic programming approach under several datasets. Lastly,
conclusions are drawn in Section 5.

2. PRELIMINARIES

2.1 Uncertain Data Model
As is the case with traditional itemset mining, a set of

items A = {a1, a2, . . . , am} is defined, and an itemset I is
defined to be a subset of A, i.e., I ⊆ A. Further, a set
of transactions T = {t1, t2, . . . , tn}, constituting the un-
certain database, is defined where each tj (1 ≤ j ≤ n) is
a set of pairs (ai, P r(ai ∈ tj)), where ai is an item and
Pr(ai ∈ tj) ∈ (0, 1]1 is the probability of ai appearing in
transaction tj . (This is unlike traditional itemset mining,
where each item is known with certitude if it exists within
a certain transaction or not.) ai is called an uncertain item
if Pr(ai ∈ tj) ∈ (0, 1). If for all items ai, in all transactions
tj , Pr(ai ∈ tj) = 1, the uncertain data model degenerates
to a certain one, and all previous traditional itemset mining
algorithms apply. However, if at least one uncertain item ap-
pears in the database, i.e., Pr(ai ∈ tj) ∈ (0, 1), we call the
database an uncertain database and we must apply newer
data mining techniques to mine for frequent uncertain item-
sets. Figure 1 shows an example uncertain database. In
that example three uncertain transactions T = {t1, t2, t3}
are shown where A = {1, 2, 3}. From the same example, we
can deduce that Pr(1 ∈ t3) = 0.9, since within transaction
t3, there exists the double (1, 0.9).

TID Uncertain Itemset
t1 (1, 1.0), (3, 0.99)
t2 (2, 0.4), (3, 0.88)
t3 (1, 0.9), (2, 0.2), (3, 0.95)

Figure 1: Example Uncertain Database

When mining for PFIs under uncertain databases, the
principles and theories of possible world semantics must be
1An existential probability of zero is not considered, since
the item would simply not appear in the transaction.

used, and all corollary theories and definitions must con-
form to such semantics. Under possible world semantics,
for each uncertain item ai in each uncertain transaction tj ,
there exists a certain database or database instance (possi-
ble world) that contains item ai and another which does not.
A possible world is a certain databases where an item ai in a
transaction tj either exists or does not with certainty. Thus,
the number of possible worlds of an uncertain database T =
{t1, t2, . . . , tn} is 2u1 · 2u2 · · · 2un = 2u1+u2+···+un where uj
is the number of uncertain items in transaction tj . If the as-
sumption of independence between the transactions in T , as
well as the items in each transaction is made, the probability
of each possible world w can be calculated as follows:

Pr(w) =
∏

t∈T (w)

(
∏
a∈t

Pr(a ∈ t′) ·
∏
a/∈t

(1− Pr(a ∈ t′))) (1)

where T (w) is the certain database of world w, t is a
certain transaction in T (w), t′ is the corresponding uncertain
transaction in uncertain database T , and Pr(a ∈ t′) is the
probability of item a in the uncertain transaction t′.

Given a traditional (certain) itemset database
T = {t1, t2, . . . , tn}, the probability of itemset I occurring in
transaction tj is 1 if I ⊆ tj , or 0 otherwise. Whereas in an
uncertain itemset database, the probability of I occurring
in tj , denoted as Pr(I ⊆ tj), is the marginal probability of
I occurring in tj in all possible worlds, i.e.:

Pr(I ⊆ tj) =
∑

w∈W,I⊆tj(w)

Pr(w) (2)

where tj(w) is the transaction tj of the certain database
in possible world w.

It can be proved, using (1) and (2), that this marginal
probability can be expressed without enumerating all possi-
ble worlds as [2]:

Pr(I ⊆ tj) =
∏
a∈I

Pr(a ∈ tj)

In a traditional (certain) itemset database T , the support
of itemset I in transaction tj , denoted Suptj (I), is 1 if I ⊆ tj
or 0 otherwise. The support of I over the entire database
T , denoted SupT (I) is:

SupT (I) = Supt1(I) + Supt2(I) + · · ·+ Suptn(I) (3)

Notice (3) is equal to the number of transactions that
contain I, i.e., SupT (I) = |{tj |I ⊆ tj ∧ tj ∈ T}|.

However, in an uncertain database T , the support of I
in transaction tj is no longer a concrete 0 or 1, and in-
stead is a random variable XI

j following a Bernoulli distri-

bution with parameter pj , where pj = Pr(XI
j = 1) and

1 − pj = Pr(XI
j = 0) (or the probability of success and

failure, respectively); here each pj = Pr(I ⊆ tj). There-
fore, in an uncertain database T , the support of I over the
entire database T is a random variable XI =

∑n
j=1 X

I
j ,

which follows a Poisson binomial distribution with param-
eters p1, p2, . . . , pn—if the assumption of independence be-
tween transactions is made. The probability that XI = i,
(0 ≤ i ≤ n), is:



Pr(XI = i) =
∑
A∈Fi

∏
j∈A

pj
∏
j∈Ā

(1− pj)

where Fi is the set of distinct sets of i integers selected
from {1, 2, . . . , n}.

The above equation represents the probability mass func-
tion (pmf) of the random variable XI . It can be also ex-
pressed as:

Pr(XI = i) =
∑

S⊆T,|S|=i

(
∏
t∈S

Pr(I ⊆ t)·
∏

t∈T−S

(1−Pr(I ⊆ t)))

2.2 Probabilistic Frequent Itemsets
With traditional (certain) itemset mining, given a database

T = {t1, t2, . . . , tn}, an itemset I is considered frequent if
and only if SupT (I) ≥ minsup, where minsup ∈ [0, n] is
some user-defined threshold. In uncertain databases, we
have only the support probability distribution of itemset I,
which follows the Poisson binomial distribution.

In [2], Bernecker et al. proposed the concept of the fre-
quentness probability2 of an itemset I to be Pr(XI ≥ i).

Thus, given minsup, an itemset I is said to be frequent
with confidence τ ∈ [0, 1], if and only if, Pr(XI ≥ minsup) ≥
τ .

Definition 1. Given an uncertain database T and an
itemset I, I is a probabilistic frequent itemset (PFI) if and
only if Pr(XI ≥ minsup) ≥ τ , where minsup ∈ [0, n] and
τ ∈ [0, 1] are user-defined thresholds. [2]

2.3 Probabilistic Frequent Closed Itemsets
One persistent problem of itemset mining in general, is the

production of too many and/or redundant frequent itemsets.
Several techniques have been proposed to combat this prob-
lem, which include mining only the set of maximal frequent
itemsets (M) or the set of closed frequent itemsets (C). Af-
ter mining all closed frequent itemsets (C), it is possible to
reproduce all frequent itemsets—with their respective sup-
ports, whereas it is not possible with M . However set C
could be larger than set M . The relationship between the
three sets is: M ⊆ C ⊆ F . The literature generally agrees
that mining closed frequent itemsets is a good compromise.

In [7]3, the probabilistic support of itemset I with confi-
dence τ ∈ [0, 1] within an uncertain database T (denoted as
PST (I, τ)) is defined as:

PST (I, τ) = argmaxi∈[0,n](Pr(X
I ≥ i) ≥ τ) (4)

It was proved in [7] that probabilistic support, PST (I, τ),
is anti-monotonic with respect to I, .i.e., PST (I, τ) ≤ PST (I ′)
if I ⊃ I ′. Based on this, a probabilistic frequent closed item-
set (PFCI) is defined in Definition 2.

Definition 2. Given an uncertain database T , user-defined
thresholds minsup ∈ [0, n] and τ ∈ (0, 1], I is a probabilis-
tic frequent closed itemset (PFCI) if and only if Pr(XI ≥
minsup) ≥ τ and there is no I ′ ⊃ I such that PST (I ′, τ) =
PST (I, τ). [7]

2The notation used in [2] is different from that presented in
this paper. A more conventional notation is used here.
3In [7], Tang et al. uses slightly different notation for prob-
abilistic support, that is, SupT (X, τ). We use PST (I, τ) to
avoid confusing it with SupT (I), previously mentioned.

3. FAST APPROXIMATION OF PFCIS
It is well-known that the Poisson distribution can closely

approximate the Poisson binomial distribution—especially
for large values of n and small values of pj = Pr(I ⊆
tj), (j = 1, 2, . . . , n). As disseminated in [8]4, if one lets
X1, X2, . . . , Xn be a set of Poisson trails, in which Pr(Xj =
1) = pj and X =

∑n
j=1 Xj , then the random variable X fol-

lows a Poisson binomial distribution. Further, let µ be the
mean of X (i.e., µ = E[X] =

∑n
j=1 pj)—then Pr(X = i)

can be approximated by the probability mass function (pmf)
of the Poisson distribution with the same mean µ. In par-
ticular we have the following:

Pr(X = i) ≈ f(i, µ) =
µi

i!
· e−µ (5)

Thus, the cumulative density function (cdf) of the Pois-

son distribution F (i, µ) =
∑i
k=0 f(k, µ), can approximate

Pr(X ≤ i) or the probability that X is less than or equal to
i as:

Pr(X ≤ i) ≈ F (i, µ) = e−µ
i∑

k=0

µk

k!

F (i, µ) increases with i because F (i, µ) =
∑i
k=0 f(k, µ)

and f(k, µ) = µk

k!
e−k > 0. It is proved in [8] that F (i, µ)

decreases with µ, i.e., ∂F (i,µ)
∂µ

< 0 and F (i, µ) < F (i, µ′) if

µ > µ′.
In Section 2.1, we established that the support of an item-

set I in an uncertain database T = {t1, t2, . . . , tn} is a ran-
dom variable XI following a Poisson binomial distribution
with pj = Pr(I ∈ tj) =

∏
a∈I Pr(a ∈ tj). Therefore, the

mean of XI , denoted as µI , is:

µI =

n∑
j=1

pj =

n∑
j=1

∏
a∈I

Pr(a ∈ tj) (6)

Thus, we have Pr(XI = i) ≈ f(i, µI) = (µI )i

i!
e−µ

I

and

Pr(XI ≤ i) ≈ F (i, µI) = e−µ
I ∑i

k=0
(µI )k

k!
.

Now one can approximate the probability of an itemset I
having a support greater than or equal i as:

Pr(XI ≥ i) = 1− Pr(XI ≤ i− 1) ≈ 1− F (i− 1, µI) (7)

If one denotes Q(i, µI) = 1−F (i− 1, µI), then (7) can be
re-formulated as:

Pr(XI ≥ i) ≈ Q(i, µI)

Thus, the probabilistic support of an itemset I with con-
fidence τ ∈ [0, 1], PS(I, τ) (defined in (4)), can be approxi-
mated by the approximate probabilistic support, denoted as
̂PS(I, τ), as follows:

̂PST (I, τ) = argmaxi∈[0,n](Q(i, µI) ≥ τ) (8)

Since the function F (i, µ) increases with i and decreases
with µ, the function Q(i, µ) = 1−F (i− 1, µ) decreases with

i and increases with µ, i.e., ∂Q(i,µ)
∂i

< 0 and ∂Q(i,µ)
∂µ

> 0.
4The accuracy of the approximation was also studied by
Wang et al., which included a mathematical bound of the
error.



Let µi (i = 0, . . . , n) be the real numbers satisfyingQ(i, µi) =
τ . That is,

Q(0, µ0) = Q(1, µ1) = · · · = Q(n, µn) = τ (9)

We can prove that µ0 < µ1 < · · · < µn as follows. Since
the function Q(i, µ) decreases with i, we have

Q(i+ 1, µi) < Q(i, µi)

for each i ∈ [0, n). Because Q(i, µi) = Q(i + 1, µi+1) (ac-
cording to (9)), we have

Q(i+ 1, µi) < Q(i+ 1, µi+1) (10)

Since the function Q(i, µ) increases with µ, we must have

µi < µi+1

for each i ∈ [0, n). This is because, if µi ≥ µi+1, we would
have Q(i + 1, µi) ≥ Q(i + 1, µi+1), which would contradict
(10).

This is summarized in Theorem 1.

Theorem 1. Given a confidence threshold τ ∈ [0, 1] and
µi such that Q(i, µi) = τ , then µi < µi+1 for i = 0, . . . , n−1.

Theorem 1 allows us to calculate ̂PS(I, τ) for an itemset
I as follows:

If µI (calculated using (6)) satisfies µi ≤ µI < µi+1 for an
i ∈ [0, n], then we have:

τ = Q(i, µi) ≤ Q(i, µI) (11)

because function Q(i, µ) increases with µ. In addition, we
also have the following—for the same reason:

Q(i+ 1, µI) < Q(i+ 1, µi+1) = τ (12)

Then, the combination of (11) and (12), shows that i is
the largest value such that Q(i, µI) ≥ τ . That proves that
̂PS(I, τ) = i, according to (8).
To determine whether an itemset I is a approximate prob-

abilistic itemset, we only need to pre-calculate µi for i =
minsup, . . . , n, that satisfies Q(i, µi) = τ . Then, µI for

itemset I is calculated. If µI < µminsup, then ̂PS(I, τ) <
minsup and I is not frequent. If µI ≥ µminsup, we find the
largest i ∈ [minsup, n], such that µi ≤ µI and assign that

value of i to ̂PS(I, τ). Figure 2 shows the function Cal-

cApproxProbSup, which does just that. In particular µI is
calculated in lines 1–8. The uncertain database T is denoted
as a matrix at line 5, where T [j][a] accesses P (a ∈ tj)

Figure 3 shows the main algorithm (A-PFCIM) which uses
Apriori enumeration (i.e., breadth-first) to mine all A-PFCIs.
Within it, each itemset I has associated with it it’s ap-
proximate probabilistic support PS, and is accessed through
I.PS. For completeness, Figure 4 displays the classic Apri-
ori algorithm which is called from the A-PFCIM method.

4. EXPERIMENTAL EVALUATION
In this section, an experimental evaluation of the A-PFCIM

algorithm is disseminated. More specifically, the A-PFCIM

function CalcApproxProbSup(itemset I)
1. float µI ← 0;
2. foreach transaction j ∈ T do
3. float product← 1;
4. foreach a ∈ I do
5. product← product · T [j][a];
6. end foreach
7. µI ← µI + product;
8. end foreach
9. if µI < µminsup then

return −1
else

12. for i = minsup+ 1 to n do
if µI < µi then

return i− 1;
end if

16. end for
end if

end function

Figure 2: Function for Calculating Approx. Proba-
bilistic Support

procedure A-PFCIM(int minsup)
C ← {a|a ∈ A};
L← {a|a ∈ C∧ CalcApproxProbSup(a) ≥ minsup};
C′ ← AprioriGen(L); // a.PS is set for all a ∈ L
while C′ 6= ∅ do

foreach I ∈ C′ do
PS ← CalcApproxProbSup(I);
if PS ≥ minsup then
I.PS ← PS;
L′ ← L′ ∪ I;

end if
end foreach
foreach I ∈ L do
flag ← true;
foreach I′ ∈ L′ do

if I ⊂ I′ ∧ I.PS ≡ I′.PS then
flag ← false;
break;

end if
end foreach
if flag then

- Output s as a probabilistic frequent
closed itemset;

end if
end foreach
L← L′;
L′.clear();
C′ ← AprioriGen(L);

end while
if L 6= ∅ then

- Output each I ∈ L as a prob. frequent closed itemset;
end if

end procedure

Figure 3: A-PFCIM Algorithm

algorithm is compared to the dynamic programming ap-
proach proposed in [2]. The two algorithms are compared
using various real datasets and combinations of user-defined
variables. All datasets used in this evaluation were taken
from the Frequent Itemset Mining Dataset Repository
<http://fimi.ua.ac.be/data/>5. However, since the datasets

5Information on the accidents dataset can be found in [6].



function AprioriGen(L)
int k ← the size of the elements in L
foreach I, I′ ∈ L such that
I1...(k−1) ≡ I′1...(k−1)

∧ Ik < I′k do

c← I1...(k−1)IkI
′
k;

if all s ⊂ c such that |s| ≡ k, s ∈ L then
C ← C ∪ {c};

end if
end foreach
return C;

end function

Figure 4: AprioriGen Function

are exact or certain, transforming them into uncertain datasets
was required. The procedure used to perform this transfor-
mation was done as follows: for each certain item in a trans-
action, the item is copied to the new uncertain dataset; a
random probability p ∈ (0, 1] is then chosen from the beta
distribution with parameters α = 5 and β = 1 for this item;
finally, p is assigned to the item with probability 1/2 and
1−p is assigned with probability 1/2. This method of trans-
forming a certain itemset database into an uncertain one, is
different from other methods, in which the probability p is
drawn from a uniform distribution [2, 1], or from a normal
distribution [8]. We believe drawing probabilities from the
beta distribution gives a possibly better representation of a
real-world dataset, in which items are close either to exist-
ing or not, rather than being uniformly random (uniform
distribution), or “ho-hum” average (normal distribution).

In Figure 5 displays the execution times culled from ex-
periments on several real and synthetic datasets. Specifi-
cally, Figure 5(a) shows the execution time as a function of
minsup/n using the A-PFCIM algorithm and Figure 5(b)
shows the same but using the dynamic programming ap-
proach. For each of the two algorithms in Figures 5(a) and
5(b), τ is held constant at 0.96. Note that the T10I4D100K
dataset seems to be largely unaffected by changes in
minsup/n. The explanation, is one of dataset characteris-
tics. The
T10I4D100K dataset is large and sparse and thus even for
small values of minsup/n, the number of A-PFCIs are very
small.

Figure 6 displays the execution times of the two algo-
rithms as a function of τ . In both experiments (Figure 6(a)
and Figure 6(b)) minsup/n is set constant at 0.35.

Next in Figure 7, we examine the amount of speedup, in
terms of execution time, of the approximation method when
compared to the dynamic one when varying minsup/n (Fig-
ure 7(a)) and varying τ (Figure 7(b)) over all the experimen-
tal datasets. Speedup is defined as:

Speedup =
T imeDynamic
T imeApprox

(13)

where T imeDynamic is the execution time in seconds of the
dynamic approach, and T imeApprox is the execution time in
seconds of the approximation approach.

We find that when looking at Speedup, and varying

6In the case of the Dynamic algorithm, values of minsup/n
that are less than 0.2 for the accidents dataset, are not tested
because the execution times involved are too onerous.
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Figure 5: Execution Time When Varying minsup/n

minsup/n (Figure 7(a)), one can observe that Speedup in-
creases as minsup/n decreases for values between 0.2 and
0.5, for the accidents and T10I4D100K datasets. For the
T10I4D100K dataset is continues to increase for lower val-
ues. However, for the chess and mushroom datasets—after
initially going higher for lower values ofminsup/n—once the
value reaches approx. 0.25 for the chess dataset and 0.15 for
the mushroom, the Speedup starts to decrease. And this is
of course when the number of itemset candidates increases.
Further, one can see that when minsup/n is set relatively
high (e.g., 0.35 and greater), the dynamic slightly outper-
forms the approximation method on the synthetic dataset
T10I4D100K.

When looking at Speedup and varying τ , we find that
Speedup remains relatively flat over the experimental val-
ues and datasets. Again, we find the synthetic dataset
T10I4D100K slightly outperforms the dynamic approach,
which is not surprising given that minsup/n = 0.35 and
what we found in Figure 7(a).

From this experimental evaluation we see that in most
cases the approximation method (A-PFCIM) performs the
mining of probabilistic frequent closed itemsets using ap-
proximation, orders of magnitude faster than the exact dy-
namic approach.
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5. CONCLUSION
This paper disseminated a new algorithm for mining ap-

proximate probabilistic frequent closed itemset (A-PFCIs).
The algorithm (A-PFCIM) still conforms to possible world
semantics, but uses the Poisson distribution to approximate
the Poisson binomial distribution, as a means to approx-
imate the probability mass function of the support of an
itemset in an uncertain database. The experimental eval-
uation given shows that the approximation method can in
most cases, mine probabilistically frequent closed itemsets
(PFCIs) orders of magnitude faster than an existing exact
method.
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