Fast Approximation of Probabilistic Frequent Closed Itemsets

Erich A. Peterson and Peiyi Tang University of Arkansas at Little Rock

March 30, 2012

Outline

2 Approximating Probabilistic Frequent Closed Itemsets

3 Experimental Evaluation

Preliminaries

Preliminaries

Approximating Probabilistic Frequent Closed Itemsets Experimental Evaluation Conclusions

Traditional Itemset Database

Т					
	а	b	с		
t ₀	х		х		
t_1	х	х	х		
t ₂		х			
t ₃		х	x		

- We have a set of items $A = \{a_1, a_2, \dots, a_m\}$
- We have a set of transactions $T = \{t_1, t_2, \dots, t_n\}$
- An itemset is any $I \subseteq A$

• Ex.
$$I = \{a, b\}$$

• Item is either present or not

Approximating Probabilistic Frequent Closed Itemsets Experimental Evaluation Conclusions

Т					
	а	b	с		
t ₀	х		х		
t_1	х	х	х		
t_2		х			
t ₃		х	х		

• The support of an itemset I is the number of transactions the itemset occurs in database T, denoted as $Sup_T(I)$

- $Sup_{t_i}(I)$ is 1 if $I \subseteq t_j$ or 0 otherwise
- $Sup_{T}(I) = Sup_{t_{0}}(I) + Sup_{t_{1}}(I) + \dots + Sup_{t_{n}}(I)$
- Any *I* ⊆ *A* whose Sup_T(*I*) ≥ minsup is considered a frequent itemset

Approximating Probabilistic Frequent Closed Itemsets Experimental Evaluation Conclusions

Uncertain Itemset Database

T I						
	а	b	С			
t_0	0.9		0.21			
t_1	0.45	1.0	0.34			
t_2		0.88				
t ₃		0.6	0.4			

 Each item a has a probability of being in transaction t_j denoted as Pr(a ∈ t_j)

• Ex.
$$Pr(a \in t_1) = 0.45$$

•
$$Pr(I \subseteq t_j) = \prod_{a \in I} Pr(a \in t_j)$$

• Ex. $Pr(\{a, b\} \subseteq t_1) = Pr(a \in t_1) \cdot Pr(b \in t_1)$

In Uncertain Databases

- The probability that *I* occurs in a transaction *t_j* can be characterized as a Bernoulli random variable X^{*I*}_{*j*} with parameter *p* = Pr(*I* ⊆ *t_j*)
- If $X' = \sum_{j=0}^{n} X_{j}'$, then X' is a random variable of the Poisson binomial distribution
- $Pr(X^{I} = i)$ is the probability the support of I is equal i

Approximating Probabilistic Frequent Closed Itemsets Experimental Evaluation Conclusions

• Thus, the probability that the support of I is at least $i(X^{I} \ge i)$ is: $\begin{cases} 2 & 0.35 \\ 2 & 0.3 \end{cases}$

$$Pr(X' \ge i) = \sum_{k=i}^{n} Pr(X' = k)$$

 If Pr(X^I ≥ minsup) ≥ τ, then I is considered a probabilistic frequent itemset (PFI) (Bernecker et al.) Closed Itemset in Traditional Database

- More concise concise / much less redundant output
- If for all itemsets $I' \supset I$, $Sup_T(I') < Sup_T(I)$, then I is closed
- However, there is no concrete support of a uncertain itemset...but we do have the probability

• We defined the new concept of *probabilistic support* (Peiyi Tang et al., ACMSE 2011):

$$PS_T(I, \tau) = argmax_{i \in [0,n]}(Pr(X' \ge i) \ge \tau)$$

Problem Statement: Probabilistic Frequent Closed Itemset (PFCI)

Given database T and user-defined thresholds τ and *minsup*, mine all itemsets I for which:

- I is probabilistically frequent, i.e. $Pr(X^{I} \ge minsup) \ge \tau$
- I is closed, i.e. for all $I' \supset I$, $PS_T(I', \tau) < PS_T(I, \tau)$

Each such itemset *I* we call a *probabilistic frequent closed itemset* (PFCI).

Approximating Probabilistic Frequent Closed Itemsets Experimental Evaluation Conclusions

- A dynamic programming approach could be used to calculate $PS_T(I, \tau)$, i.e., with Bernecker et al.'s method
- This can be expensive, as to calculate PS_T(I, τ) one continues until Pr(X^I ≥ i) < τ

Approximating Probabilistic Frequent Closed Itemsets

Approximating Probabilistic Frequent Closed Itemsets

- Wang et al. showed that the Poisson binomial distribution can be approximated using the Poisson distribution
- The Poisson pmf is $Pr(X = i) \approx f(i, \mu) = \frac{\mu^i}{i!} \cdot e^{-\mu}$
 - Thus, the Poisson distribution cdf is $F(i,\mu) = \sum_{k=0}^{i} f(k,\mu)$
- We can use $\mu^I = \sum_{j=1}^n \prod_{a \in I} \Pr(a \in t_j)$ the expected support of I in T
- Let $Q(i,\mu') = 1 F(i-1,\mu')$, then $Pr(X' \ge i) \approx Q(i,\mu')$

•
$$PS_T(i, \tau) = argmax_{i \in [0,n]}(Q(i-1, \mu') \ge \tau)$$

Problem Statement: Approx. Probabilistic Frequent Closed Itemset (A-PFCI)

Given an uncertain database T and user-defined threshold τ and minsup, mine all itemsets I for which:

• I is an approximate probabilistically frequent itemset, i.e. $\widehat{PS_T(I, \tau)} \ge minsup$

• I is closed, i.e. for all $I' \supset I$, $P\widehat{S_T(I', \tau)} < P\widehat{S_T(I, \tau)}$

Each such itemset is called an *approximate probabilistic frequent closed itemset* (A-PFCI)

- Let μ_i (i = 0, ..., n) be the real numbers satisfying $Q(i, \mu_i) = \tau$.
 - i.e. $Q(0,\mu_0) = Q(1,\mu_1) = \cdots = Q(n,\mu_n) = \tau$
 - Because $Q(i, \mu)$ decreases with *i* and increases with μ : $\mu_0 < \mu_1 < \cdots < \mu_n$
- Using this fact, one can calculate $PS(I, \tau)$ for an itemset I as follows:
- If μ^{l} satisfies $\mu_{i} \leq \mu^{l} < \mu_{i+1}$ for an $i \in [0, n]$, then we have: • $\tau = Q(i, \mu_{i}) \leq Q(i, \mu^{l})$
- In addition, we also have the following—for the same reason:

•
$$Q(i+1,\mu') < Q(i+1,\mu_{i+1}) = \tau$$

• This shows that *i* is the largest value such that $Q(i, \mu^{I}) \geq \tau$.

```
function CalcApproxProbSup(itemset /)
   float \mu' \leftarrow 0;
   foreach transaction i \in T do
      float product \leftarrow 1:
      foreach a \in I do
         product \leftarrow product \cdot T[j][a];
      end foreach
      \mu' \leftarrow \mu' + \text{product};
   end foreach
   if \mu' < \mu_{minsup} then
      return -1
   else
      for i = minsup + 1 to n do
         if \mu' < \mu_i then
            return i - 1;
         end if
      end for
   end if
end function
```

• Using this method, to calculate $PS_T(I, \tau)$ we need only to "lookup" the right value using the precomputed μ_i (i = minsup + 1, ..., n)

Experimental Evaluation

Experimental Evaluation

tau = 0.9

Conclusions

Conclusions

- We define the new concept of an *approximate probabilistic frequent closed itemset* (A-PFCI)
- Will decrease the redundancy and size of output
- Developed an algorithm to mine these new concepts called A-PFCIM

Thank You Questions?

paper / slides / code website: erichpeterson.com