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Traditional Itemset Database

T
a b c

t0 x x

t1 x x x

t2 x

t3 x x

We have a set of items A = {a1, a2, . . . , am}
We have a set of transactions T = {t1, t2, . . . , tn}
An itemset is any I ⊆ A

Ex. I = {a, b}
Item is either present or not
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T
a b c

t0 x x

t1 x x x

t2 x

t3 x x

The support of an itemset I is the number of transactions the
itemset occurs in database T , denoted as SupT (I )

Ex. SupT ({a, c}) = 2

Suptj (I ) is 1 if I ⊆ tj or 0 otherwise

SupT (I ) = Supt0(I ) + Supt1(I ) + · · ·+ Suptn(I )

Any I ⊆ A whose SupT (I ) ≥ minsup is considered a frequent
itemset
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Uncertain Itemset Database

T
a b c

t0 0.9 0.21

t1 0.45 1.0 0.34

t2 0.88

t3 0.6 0.4

Each item a has a probability of being in transaction tj
denoted as Pr(a ∈ tj)

Ex. Pr(a ∈ t1) = 0.45

Pr(I ⊆ tj) =
∏

a∈I Pr(a ∈ tj)

Ex. Pr({a, b} ⊆ t1) = Pr(a ∈ t1) · Pr(b ∈ t1)
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In Uncertain Databases

The probability that I occurs in a transaction tj can be
characterized as a Bernoulli random variable X I

j with
parameter p = Pr(I ⊆ tj)

If X I =
∑n

j=0 X
I
j , then X I is a random variable of the Poisson

binomial distribution

Pr(X I = i) is the probability the support of I is equal i
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Thus, the probability that
the support of I is at least
i(X I ≥ i) is:

Pr(X I ≥ i) =
n∑

k=i

Pr(X I = k)
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If Pr(X I ≥ minsup) ≥ τ , then I is considered a probabilistic
frequent itemset (PFI) (Bernecker et al.)
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Closed Itemset in Traditional Database

More concise concise / much less redundant output

If for all itemsets I ′ ⊃ I , SupT (I ′) < SupT (I ), then I is closed

However, there is no concrete support of a uncertain
itemset...but we do have the probability
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We defined the new concept of probabilistic support (Peiyi
Tang et al., ACMSE 2011):

PST (I , τ) = argmaxi∈[0,n](Pr(X I ≥ i) ≥ τ)

Problem Statement: Probabilistic Frequent Closed Itemset (PFCI)

Given database T and user-defined thresholds τ and minsup, mine
all itemsets I for which:

I is probabilistically frequent, i.e. Pr(X I ≥ minsup) ≥ τ
I is closed, i.e. for all I ′ ⊃ I , PST (I ′, τ) < PST (I , τ)

Each such itemset I we call a probabilistic frequent closed itemset
(PFCI).
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A dynamic programming approach could be used to calculate
PST (I , τ), i.e., with Bernecker et al.’s method

This can be expensive, as to calculate PST (I , τ) one
continues until Pr(X I ≥ i) < τ
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Wang et al. showed that the Poisson binomial distribution can
be approximated using the Poisson distribution

The Poisson pmf is Pr(X = i) ≈ f (i , µ) = µi

i! · e
−µ

Thus, the Poisson distribution cdf is F (i , µ) =
∑i

k=0 f (k, µ)

We can use µI =
∑n

j=1

∏
a∈I Pr(a ∈ tj) — the expected

support of I in T

Let Q(i , µI ) = 1− F (i − 1, µI ), then Pr(X I ≥ i) ≈ Q(i , µI )

̂PST (I , τ) = argmaxi∈[0,n](Q(i − 1, µI ) ≥ τ)
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Problem Statement: Approx. Probabilistic Frequent Closed Itemset
(A-PFCI)

Given an uncertain database T and user-defined threshold τ and
minsup, mine all itemsets I for which:

I is an approximate probabilistically frequent itemset, i.e.
̂PST (I , τ) ≥ minsup

I is closed, i.e. for all I ′ ⊃ I , ̂PST (I ′, τ) < ̂PST (I , τ)

Each such itemset is called an approximate probabilistic frequent
closed itemset (A-PFCI)
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Let µi (i = 0, . . . , n) be the real numbers satisfying
Q(i , µi ) = τ .

i.e. Q(0, µ0) = Q(1, µ1) = · · · = Q(n, µn) = τ
Because Q(i , µ) decreases with i and increases with µ:
µ0 < µ1 < · · · < µn

Using this fact, one can calculate ̂PS(I , τ) for an itemset I as
follows:

If µI satisfies µi ≤ µI < µi+1 for an i ∈ [0, n], then we have:

τ = Q(i , µi ) ≤ Q(i , µI )

In addition, we also have the following—for the same reason:

Q(i + 1, µI ) < Q(i + 1, µi+1) = τ

This shows that i is the largest value such that Q(i , µI ) ≥ τ .
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function CalcApproxProbSup(itemset I )
float µI ← 0;
foreach transaction j ∈ T do

float product ← 1;
foreach a ∈ I do

product ← product · T [j ][a];
end foreach
µI ← µI + product;

end foreach
if µI < µminsup then

return −1
else

for i = minsup + 1 to n do
if µI < µi then

return i − 1;
end if

end for
end if

end function
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Using this method, to calculate ̂PST (I , τ) we need only to
“lookup” the right value using the precomputed µi
(i = minsup + 1, . . . , n)
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We define the new concept of an approximate probabilistic
frequent closed itemset (A-PFCI)

Will decrease the redundancy and size of output

Developed an algorithm to mine these new concepts called
A-PFCIM
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Thank You
Questions?

paper / slides / code
website: erichpeterson.com
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