

Leveraging the Old with the New: Integration of Historic Microarray Studies with Next Gen Sequencing for Multiple Myeloma

Michael A. Bauer, Erich A. Peterson, Shweta S. Chavan, Daniel L. Pollock, Christoph J. Heuck and Donald J. Johann, Jr.

ABSTRACT

Next-Gen Sequencing (NGS) methods are rapidly providing remarkable advances in our ability to study the molecular profiles of human cancers. However, the scientific discovery offered by NGS also includes challenges concerning the interpretation of large and non-trivial experimental results. This task is potentially further complicated when a multitude of molecular profiling modalities are available, with the goal of a more integrative type of analysis of the cancer biology.

As technology advances, it is critical to leverage what has been gained from historic approaches (e.g., microarrays) with new approaches (NGS). Microarray transcriptome analyses have resulted in important advances in biomedicine. For instance, in multiple myeloma (MM) microarray approaches led to the development of a prognostic 70 gene risk score, as well as an effective disease subtyping system via cluster assignment.

A suite of custom software tools have been developed to integrate NGS experimental data along with microarray and Affymetrix probe set-IDs, and gene annotation information from a variety of public sources. The approach employs a variety of strategies to integrate, annotate, and associate microarray and NGS datasets.

- Epidemiology each year.
- remissions & relapses.

	Three year O.S.	Treatment
Past	42%	Melphalan + Prednisone
Today	>80%	 New agents (IMiDs, Proteasome Inhibitors) Autologous transplant Supportive care (bisphosphonates)

Microarray vs. NGS

Principle Resolution **Distinguish Allelic** expression? Distinguish splice forms? **Discover new genes?** Strandedness? Dynamic range

Cost

Multiple Myeloma

Plasma Cell Malignancy

Hyper**C**alcemia **R**enal Failure Anemia **B**one Lesions (Osteolytic)

 \circ ~20,000 new cases and 10,000 deaths occur in the US

• MM is incurable with a clinical course characterized by

Patient survival has improved dramatically in recent years (improved understanding of the cancer biology \rightarrow New Rx)

decision making.

Next-Gen Sequencing

RNA-Seq

Microarray	RNA-Seq	exon 1 exon 2 exon 3 exon 4 exon 5	W/by/2
Hybridization	Cloning & sequencing		Vily:
Several to 100 bp	Single base		• Simpler, Chea
Limited	Yes	Isoform 2	FasterClinically action
Limited	Yes	Isoform ratio change	variants/muta
No	Yes	Condition A Condition B	Variants
No	Yes		 SNVs (Single
Few hundred-fold	> 8000-fold		Variant)
Medium	High (due to computation)	2 3 1	 InDels (Insertion/Del

NGS Viewer

	Ensembl Gene Id	Gene Name	Gene Syn	FPKM	Locus	Probeset	Value	Member					
1	ENSG00000110092	cyclin D1	CCND1	3.54	11:69455854-69469242	208711_s_at	2775.2						
-	ENSG00000110092	cyclin D1	CCND1	3.54	11:69455854-69469242	208712_at	2846.8						
-	ENSG00000112576	cyclin D3	CCND3	10.48	6:41902670-42018095	201700_at	595.1						
1	ENSG00000107984	dickkopf 1 homolog (Xenopus laevis)	DKK1	3.5	10:54074055-54077802	204602_at	460.4						
0	ENSG0000068078	fibroblast growth factor receptor 3	FGFR3	0.16	4:1795033-1810599	204379_s_at	147.3						
-	ENSG0000068078	fibroblast growth factor receptor 3	FGFR3	0.16	4:1795033-1810599	204380_s_at	178.3						
1	ENSG00000178573	v-maf musculoaponeurotic fibrosarcoma on	MAF	3.12	16:79619739-79634611	1566324_a_at	6.5						
	ENSG00000178573	v-maf musculoaponeurotic fibrosarcoma on	MAF	3.12	16:79619739-79634611	206363_at	15.5						
E.	ENSG00000178573	v-maf musculoaponeurotic fibrosarcoma on	MAF	3.12	16:79619739-79634611	209347_s_at	57.7						
-	ENSG00000178573	v-maf musculoaponeurotic fibrosarcoma on	MAF	3.12	16:79619739-79634611	209348_s_at	48.1						
m	ENSG00000204103	v-maf musculoaponeurotic fibrosarcoma on	MAFB	0.61	20:39314487-39317880	218559_s_at	20.3	•					
1	ENSG00000204103	v-maf musculoaponeurotic fibrosarcoma on	MAFB	0.61	20:39314487-39317880	222670_s_at	329.4						
1	ENSG00000109320	nuclear factor of kappa light polypeptide g	NFKB1	9.06	4:103422485-103538459	209239_at	506.9						
-	ENSG00000109685	Wolf-Hirschhorn syndrome candidate 1	WHSC1	42.68	4:1873150-1983934	209052_s_at	153.9						
-	ENSC00000100685	Wolf-Hirschhorn syndromo condidato 1	WHSC1	42.69	4-1972150-1092024	200052 c pt	06.4	-					

Integrated tabular experimental results

Conclusions

- Microarray data is compressed and is a correlative science.
- RNA-Seq is discovery based, with resolution to the base level, has a higher dynamic range, & facilitates discovery of new genes, isoforms, gene fusions, etc.
- WES provides the ability to discover clinically actionable mutations
- Integration of historical microarray studies with WES & RNA-Seq is critical, thus motivation for the NGS Association System.

