Mining Probabilistic Generalized Frequent Itemsets in Uncertain Databases

Erich A. Peterson Peiyi Tang

University of Arkansas at Little Rock

contact@erichpeterson.com

April 4, 2013

- Uncertain Data Model
- Probabilistic Frequent Itemsets
- Probabilistic Generalized Frequent Itemset Mining¹
- Conclusion

Uncertain Data Model

- Items have an existential probability of occurring
- There is no support, only probabilities
- How do we calc. support and thus if an itemset is frequent or not?
- In this research, possible world semantics are used

TID	ltemset	
t_1	(apple, 0.89), (banana, 0.99), (kale, 1.0)	
t_2	(apple, 0.4), (banana, 0.45), (cheese, 0.12)	
t ₃	(apple, 0.9), (milk, 0.95), (cheese, 0.20)	

Т

Т

TID	ltemset	
t_1	(apple, 0.89), (banana, 0.99), (kale, 1.0)	
t ₂	(apple, 0.4), (banana, 0.45), (cheese, 0.12)	
t ₃	(apple, 0.9), (milk, 0.95), (cheese, 0.20)	

- In possible world semantics, for each uncertain item *a* in transaction t_j , there exists a concrete instance of t_j which contains *a* and one that does not
- E.x. Possible World for t_1

 $W(t_1) = \{ \langle kale \rangle, \langle apple, kale \rangle, \langle banana, kale \rangle, \langle apple, banana, kale \rangle \}$

- The probability of an itemset *I* occurring in an arbitrary transaction *t*, denoted as Pr(I ⊆ t), is the sum of the probabilities of all the possible worlds w ∈ W(t) which contain *I*.
- This requires the enumeration of all possible worlds of W(t); however, Pr(I ⊆ t) can be calculated as:

$$Pr(I \subseteq t) = \prod_{a \in I} Pr(a \in t)$$

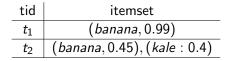
Т

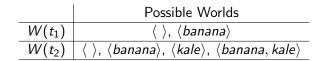
TID	ltemset	
t_1	(apple, 0.89), (banana, 0.99), (kale, 1.0)	
t_2	(apple, 0.4), (banana, 0.45), (cheese, 0.12)	
t ₃	(apple, 0.9), (milk, 0.95), (cheese, 0.20)	

E.x. $Pr(\{apple, banana\} \subseteq t_1) = 0.89 * 0.99$

The set of all possible worlds W induced by all transactions in the uncertain database T{t₁,..., t_n} is the Cartesian product of W(t_j), j = 1,..., n, as follows:

$$W = W(t_1) \times W(t_2) \times \cdots \times W(t_n)$$





TID	Possible Worlds	
w ₁	$\langle \rangle, \langle \rangle$	
<i>W</i> ₂	$\langle \ angle, \ \langle banana angle$	
W ₃	$\langle \rangle$, $\langle kale \rangle$	
W4	$\langle \rangle$, $\langle banana, kale \rangle$	
W ₅	$\langle banana \rangle, \langle \rangle$	
W ₆	⟨banana⟩, ⟨banana⟩	
W ₇	(banana), (kale)	
W ₈	$\langle banana angle, \langle banana, kale angle$	

If the assumption of independence between the transactions in T is valid, the probability of a possible world
 w = (w(t₁), w(t₂),..., w(t_n)) ∈ W can be calculated as follows:

$$Pr(w) = \prod_{i=1}^{n} Pr(w(t_i))$$

where Pr(w(t)) was previously defined.

- In an *uncertain* database *T*, the support of *I* in transaction t_j , $Sup_{t_j}(I)$, is no longer a concrete 0 or 1. Instead, it is a random variable X_j^I following a Bernoulli distribution with parameter p_j , where $p_j = Pr(X_i^I = 1) = Pr(I \subseteq t_j)$
- The support of I over the entire database T is a random variable $X^{I} = \sum_{j=1}^{n} X_{j}^{I}$
- X^I follows the Poisson binomial distribution with parameters
 p_j = Pr(I ⊆ t_j), j = 1,..., n, if the assumption of independence
 between transactions is made.
- The probability that $X^{I} = i$, $(0 \le i \le n)$, is:

$$Pr(X^{I} = i) = \sum_{S \subseteq T, |S|=i} \left(\prod_{t_j \in S} p_j \cdot \prod_{t_j \in T-S} (1-p_j) \right)$$

Probabilistic Frequent Itemsets

• One can calculate $Pr(X^{l} \ge minsup)$ using the following formula:

$$Pr(X' \geq minsup) = \sum_{S \subseteq T, |S| \geq minsup} \left(\prod_{t_j \in S} p_j \cdot \prod_{t \in T-S} (1-p_j) \right)$$

Definition: Probabilistic Frequent Itemset (PFI)

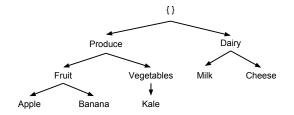
Given an uncertain database T and an itemset I, I is a probabilistic frequent itemset (PFI) with confidence τ , if and only if $Pr(X^{I} \ge minsup) \ge \tau$, where $minsup \in [0, n]$ and $\tau \in [0, 1]$ are user-defined thresholds. Bernecker et al.

 The problem of mining probabilistic frequent itemsets, is to discover all itemsets *I* such that Pr(X^I ≥ minsup) ≥ τ, where minsup and τ are user-defined thresholds.

Probabilistic Generalized Frequent Itemsets

Introduction

 Generalized itemset mining differs from traditional itemset mining, in that the database is accompanied by a taxonomy



- The taxonomy defines the relationships among the items
- With the addition of the taxonomy, new frequent itemsets and association rules may be discovered
 - Apples and Bananas by themselves may not be frequent, but Fruits could be

- Let $D(g) = \{$ set of descendants of g in $G \}$
- The subset and inclusion must be re-defined:

```
    a ∈<sub>G</sub> S, if and only if:
    a ∈ S; or
    ∃a' ∈ D(a) : a' ∈ S
```

- I ⊆_G S, if and only if, for each a ∈ I:
 a ∈_G S
- E.x. {fruit, cheese} is 2, because {fruit, cheese} $\subseteq_G t_2$, {fruit, cheese} $\subseteq_G t_3$, but {fruit, cheese} $\nsubseteq_G t_1$

TID	Itemset	
t_1	apple, banana, kale	
t_2	apple, banana, cheese	
t ₃	apple, milk, cheese	

Probabilistic Generalized Frequent Itemset Mining

TID	ltemset	i I
t_1	(apple, 0.89), (banana, 0.99), (kale, 1.0)	(<i>fruit</i> , 0.9989)
t ₂	(apple, 0.4), (banana, 0.45), (cheese, 0.12)	(<i>fruit</i> , 0.995)
t ₃	(apple, 0.9), (milk, 0.95), (cheese, 0.20)	(<i>fruit</i> , 0.9)

Т

- In traditional generalized itemset mining, it is easy to know if the transaction supports a generalized itemset or not
- In an uncertain database, as shown above, we need a way to calculate the probability of a generalized / abstract item occurring in an arbitrary transaction t, i.e., Pr(g ∈_G t)
- This probability must conform to possible world semantics

 We can formulate a way to calculate Pr(g ∈_G t) without the need for enumerating all possible worlds as:

$${\it Pr}(g\in_{{\it G}}t)=1-\prod_{{\it a}\in D(g)}(1-{\it Pr}({\it a}\in t))$$

• E.x. Calculating the probability of the generalized item *fruit* occurring in transaction t_1 in out example database, given that $D(fruit) = \{apple, banana\}, \text{ can be done as follows: } Pr(fruit \in_G t_1) = 1 - (1 - Pr(apple \in t_1)) \cdot (1 - Pr(banana \in t_1)) = 0.9989.$

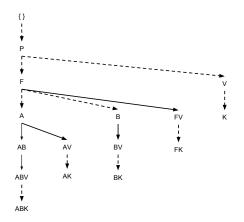
Т

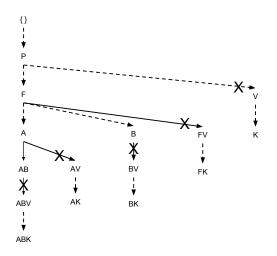
 TID
 Itemset

 t_1 (apple, 0.89), (banana, 0.99), (kale, 1.0)
 (fruit, 0.9989)...

Algorithm Sketch of PGFIM

- Candidate enumeration is done using the SET algorithm (Sriphaew et al.)
 - The relationships between itemsets (subset-superset) and within taxonomy *G* (ascendent-descendent) are used to prune the search space
 - E.x. More generalized items are enumerated first, and the downward closure property is used (smaller subsets are enumerated before larger supersets)

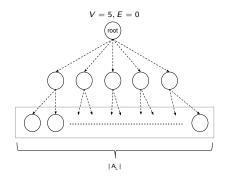


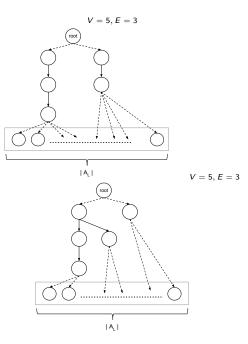


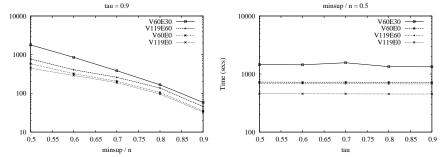
• An exact dynamic programming approach is used to determine frequency (Bernecker et al.)

Taxonomy Generation

- Diversity of taxonomies experimented with in other's research has tended to be small
- Experimental taxonomies are generated using parameters V and E:
 - V: the number of internal (generalized) vertices found in G
 - E: the number of randomly generated edges connecting the V vertices
- $|A_L|$: the number of attributes (leaf vertices) that have to be present (found in DB)

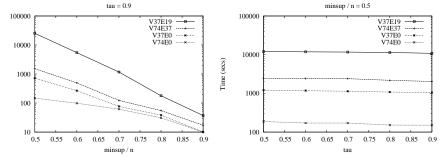






Mushroom Dataset

Time (secs)



Chess Dataset

- We have introduced a new concept and definition for the problem of mining probabilistic generalized frequent itemsets (PGFIs)
- An algorithm has been created to mine for such concepts called PGFIM
- Experimental evaluation has been performed

Thank You

Q & A