
Mining Relaxed Closed Subspace Clusters

Erich A. Peterson
University of Arkansas at Little Rock

2801 S. University Ave.
Little Rock, AR 72204

eapeterson@ualr.edu

Peiyi Tang
University of Arkansas at Little Rock

2801 S. University Ave.
Little Rock, AR 72204
pxtang@ualr.edu

ABSTRACT
This paper defines and discusses a new problem in the area of
subspace clustering. It defines the problem of mining closed
subspace clusters. This new concept allows for the culling of
more high quality and less redundant clusters, than that of
traditional clustering algorithms. In addition, our method
contains a relaxation parameter, which allows for the classi-
fication of qualifying clusters into mutually exclusive bins of
varying quality—extending the problem to mining relaxed
closed subspace clusters. These concepts culminate in a
new algorithm called Relaxed Closed Subspace Clustering
(RCSC).

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining ; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Clustering

General Terms
Algorithms, Theory.

Keywords
Closed subspace cluster, maximal subspace cluster, relaxed
closed subspace cluster, relaxed interval, subspace cluster-
ing, data mining.

1. INTRODUCTION
We say subspace clustering [18, 2, 6, 9, 10, 3, 19, 1] (as

opposed to classic clustering [4, 11, 12], pattern-based clus-
tering [16, 13, 17, 22], or correlation clustering [13]) seeks to
find clusters of objects that are “close” to one another on a
certain subset of all the attributes within a database, where
the “closeness” of the clusters is determined by some mea-
sure. The literature will sometimes refer to subspace clus-
tering as “projection clustering” (which originally referred
to a different subproblem, but has since blended into the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACMSE ’10 April 15-17, 2010, Oxford, MS, USA.
Copyright 2010 ACM 978-1-4503-0064-3/10/04 ...$10.00.

same problem) [13]. Technically, and disseminated in [13],
the problem of finding subspace clusters, should be referred
to as “finding clusters in axis-parallel subspaces”. In this
paper, we will simply refer to it as subspace clustering. The
invention of subspace clustering, was formulated to provide
a more efficient way of mining clusters, when the dimen-
sionality of the database is high. When dimensionality is
high, nearly all objects are equidistant from one another—a
phenomenon known as the curse of dimensionality [5]. Work
has been done in transforming varying forms of the subspace
clustering problem, into a certain kind of frequent itemset
mining problem [23, 14].

In recent years, using what is known as the Galois (clo-
sure) operator, researchers have defined what is called a
closed itemset and presented algorithms for the mining of
frequent closed itemsets, both in static [15] and in evolv-
ing/streaming databases [8]. Moreover, Song et al. [21] have
presented an algorithm that partitions the support threshold
into intervals (I1, . . . , In) known as relaxed intervals (based
on a user-specified relaxation factor). Each closed itemset
found is then assigned to an interval Ii based on its sup-
port. The formulation of a relaxed closed itemset can then
be made; that is, a closed itemset X is considered relaxed
and closed, if and only if, there exist no proper superset X ′

of X such that both belong to the same interval.
In this paper, we present the new problem of mining for re-

laxed closed subspace clusters, drawing inspiration from the
aforementioned algorithms and concepts, and an algorithm
called RCSC to mine for these newly defined clusters. This
allows for the culling of more high quality and less redundant
clusters, than that of traditional clustering algorithms. The
rest of this paper is as follows: the definition of the problem
is presented in Section 2; the algorithm to mine these newly
defined clusters is shown in Section 3; some experimental re-
sults are shown in Section 4; finally, in Section 5 conclusions
and future work are explained.

2. DEFINITION OF PROBLEM
Let O be a set of objects and A a set of attributes (where

each attribute’s domain is bounded) in a database S. If we
have objects x, y ∈ O and attributes a, b ∈ A, we denote the
value of object x on attribute a as vxa and the value of object
y on attribute b as vyb. Let Ra denote the range of attribute
a, i.e., | maxx∈O(vxa) − miny∈O(vya) |. Thus, the relative
distance between any two objects x and y on attribute a
is | vxa − vya | / Ra. Let T be a subset of objects from
all objects O (i.e., T ⊆ O), and D be a subset of attributes
from all attributes A (i.e., D ⊆ A). In addition, let the user-

specified value δ, be known as the relative distance threshold
0 ≤ δ ≤ 1. This leads to the common definition of a subspace
cluster in Definition 1.

Definition 1. (Subspace Cluster) Given a subset of all ob-
jects T ⊆ O and a subset of all attributes D ⊆ A, (T,D)
is considered a subspace cluster, if and only if, the relative
distance between any objects in T , on all attributes in D,
are less than δ .

In addition, given two subspace clusters (T,D) and
(T ′, D′), if T ⊆ T ′ and D ⊆ D′, we say that (T,D) is
a sub-cluster of (T ′, D′), and conversely, that (T ′, D′) is a
super-cluster of (T,D). Moreover, if either T ⊂ T ′ or D ⊂
D′ is true, then we say that (T,D) is a proper sub-cluster
of (T ′, D′), and conversely, that (T ′, D′) is a proper super-
cluster of (T,D), denoted as (T,D) ⊂ (T ′, D′).

Subspace clusters exhibit the downward closure property.
More precisely, given a subspace cluster (T,D), all sub-
clusters of (T,D) are also subspace clusters. Therefore, once
a cluster has been found, the reporting of its sub-clusters is
redundant, and those clusters are called redundant clusters.
In all but the most trivial databases, the mining of subspace
clusters according to Definition 1, leads to the discovery of
redundant subspace clusters. That is, given a subspace clus-
ter (T ′, D′), there could be a large number of subspace clus-
ters (T,D), that are sub-clusters of (T ′, D′). This has led to
the development of algorithms such as ones that only mine
maximal subspace clusters [14]1. The definition of a maximal
subspace cluster is given in Definition 2.

Definition 2. (Maximal Subspace Cluster) A subspace
cluster (T,D) is maximal, if and only if, there does not exist
a subspace cluster (T ′, D′) such that (T,D) ⊂ (T ′, D′).

The net result is a reduction in the number of subspace
clusters, but also leads to the loss of any measurement of
quality of the clusters, that is, the relative closeness of the
objects in the cluster. With traditional subspace clustering
algorithms, as long as the cluster’s objects relative distance
is below the relative distance threshold δ they are reported.

This lack of a quantitative quality measurement inspired
our new concept and definition of a closed subspace cluster.
Given a subspace cluster (T,D), we use its diameter defined
as:

ξTD = maxa∈D,x∈T,y∈T(| vxa − vya | / Ra) (1)

to define the qualify of the cluster. With this concept a
closed subspace cluster is defined in Definition 3.

Definition 3. (Closed Subspace Cluster) A subspace clus-
ter (T,D) is closed, if and only if, there does not exist a
subspace cluster (T ′, D′) such that (T,D) ⊂ (T ′, D′) and

ξTD = ξT
′

D′ .

The previous definition is the natural and intuitive exten-
sion of the concept of closure in other domains (e.g., itemset
mining). It also allows for the discovery and evaluation of
subspace clusters of differing diameters. However, tiny dif-
ferences in diameter between two clusters (T,D) ⊂ (T ′, D′)

1In [14], Liu et al. define them as maximal δ-nClusters,
where the ‘n’ stands for neighbor.

can cause both to be closed. If many tiny differences in
diameter exist between clusters with this type of relation-
ship, too many will be reported. For example, if we have
two subspace clusters (T,D) = ({o1}, {a1}) with ξTD = 0.45,

and (T ′, D′) = ({o1}, {a1, a2}) with ξT
′

D′ = 0.44, even though
(T ′, D′) is a super-cluster of (T,D), because the diameters
are not equal, both could be closed subspace clusters. Faced
with this problem we introduce a method to relax the diam-
eters considered distinct.

Let the user-specified value p, 1 ≤ p < ∞, be known as
the relaxation factor. It is used to divide the range of values
between 0 and δ, into p discrete intervals Ii (i = 1, . . . , p)
as:

Ii = [
δ

p
(i− 1),

δ

p
i) (2)

Each subspace cluster can then be assigned to an interval
Ii, based on the cluster’s diameter ξTD. For example, given
δ = 0.5 and p = 4, we would have the following intervals:
I1 = [0, 0.125), I2 = [0.125, 0.25), I3 = [0.25, 0.375), and
I4 = [0.375, 0.5). Given a subspace cluster (T,D) with ξTD =
0.2, it would belong to interval I2, since 0.2 ∈ I2. We denote
the interval to which a subspace cluster (T,D) belongs to as
ITD.

Finally, we are able to present the definition of a relaxed
closed subspace cluster, which is presented in Definition 4.

Definition 4. (Relaxed Closed Subspace Cluster) A sub-
space cluster (T,D) is relaxed and closed, if and only if,
there does not exist a subspace cluster (T ′, D′) such that

(T,D) ⊂ (T ′, D′) and ITD = IT
′

D′ .

One can see, that as p is increased, so will be the num-
ber of relaxed and closed clusters reported. In fact, as p
approaches ∞, the problem reduces to the classic subspace
clustering problem (see Definition 1)—making it a special
case of our algorithm. When p = 1, we have only one in-
terval and the problem is reduced to the maximal subspace
clustering problem (see Definition 2). Also, one can think of
the relaxed and closed clusters found within lower numbered
intervals as being of a higher quality. That is, their diame-
ters are smaller and thus the objects within each cluster are
more relatively close.

Comparing the definitions we have discussed on a simple
set of subspace clusters will help illustrate their differences.
Suppose we have four subspace clusters with respect to δ =
0.50 as shown in Table 1. According to the definition of a

Table 1: Example of Four Clusters (δ = 0.50)
Cluster Diameter ξ

C1 = ({o1}, {a1}) 0.20
C2 = ({o1, o2}, {a1}) 0.20

C3 = ({o1, o2}, {a1, a2}) 0.26
C4 = ({o1, o2}, {a1, a2, a3}) 0.30

sub-cluster, we have C1 ⊂ C2 ⊂ C3 ⊂ C4. Assume that
p = 2. Table 2 shows the different subspace clusters found
using each of the three aforementioned definitions.

The traditional subspace cluster definition would find all
clusters, because in all clusters, all the objects that are in a
cluster have a relative distance from each other which is less

Table 2: Subspace Clustering Methods
Method Subspace Clusters Found

Traditional (Def. 1) C1, C2, C3, C4

Maximal (Def. 2) C4

Closed (Def. 3) C2, C3, C4

Relaxed Closed (Def. 4) C2 : I1, C4 : I2

than 0.50 on all attributes in the cluster. According to the
maximal subspace cluster definition, only C4 is a maximal
subspace cluster, because C1, C2 and C3 are sub-clusters of
C4. Using the closed subspace cluster definition, we would
find that C2, C3, and C4 are closed subspace clusters, be-
cause each of them has a distinct diameter and there is no
supercluster with the same diameter. C1 is not a closed sub-
space cluster because it has the same diameter as C2 and is
a proper sub-cluster of C2. Finally, using the relaxed closed
subspace cluster definition with p = 2, only C2 and C4 are
relaxed and closed subspace clusters. This is because C1 and
C2 belong to I1 and C3 and C4 belong to I2. But, C1 ⊂ C2

and C3 ⊂ C4; thus, C1 and C3 cannot be relaxed and closed
subspace clusters according to Definition 4.

3. RELAXED CLOSED SUBSPACE CLUS-
TERING (RCSC)

Now that the problem definitions for closed subspace clus-
ters and relaxed closed subspace clusters have been pre-
sented, we now turn to the dissemination of an algorithm for
the mining of relaxed closed subspace clusters called RCSC.

Our strategy to find relaxed closed subspace clusters takes
two steps: (1) we first find all the subspace clusters with
respect to relative distance threshold δ (and a couple of other
user-specified parameters to be discussed), and (2) find the
relaxed closed subspace clusters for each interval by pruning
away non-relaxed and non-closed subspace clusters. The
first step is accomplished by transforming the problem into
a quasi-frequent itemset mining problem.

3.1 Transformation to Itemset Mining Prob-
lem

As mentioned in Section 1, several algorithms have trans-
formed varying forms of the subspace clustering problem,
into a certain kind of itemset mining problem [23, 14]. We
take inspiration from this idea (especially in [14]) in this
subsection and use it as a part of our RCSC algorithm.

Let database S, shown in Table 3, be a running example
with attributes a, b, and c and objects 0, 1, 2, and 3. The
range of values for each attribute in S is: Ra = 4 − 1 = 3,
Rb = 12 − 8 = 4, and Rc = 1.0 − 0.1 = 0.9. Also, let
δ = 0.51.

Table 3: Sample Database S
a b c

0 1 9 0.1
1 4 10 0.6
2 2 12 1.0
3 3 8 0.5

We start the process by making a projection of each of

the attributes in S, and sort the values of each object on
that attribute in ascending order. Table 4 shows these three
projections made from the sample database S.

Table 4: Sample Database S
a

1 2 3 4

b
8 9 10 12

c
0.1 0.5 0.6 1.0

Next, two pointers s and t (s < t) are used to point to
values in this projection. A search is then performed for a
combination of positions for s and t, where the difference
between the values t and s is less than δ × Ra, and either
the difference between (t + 1) and s, or t and (s − 1) is
greater than or equal δ × Ra. Once such a combination
is found, the attribute a and the sorted list of the object
indices represented between s and t are entered into a what
is called a maximal object list. For example, for attribute b,
if pointers s and t are pointed to values 8 and 10 respectively,
then because t− s < δ ×Rb—that is 10− 8 < .51× 4—and
((t + 1) − s) ≥ δ × Rb, b is entered in the maximal object
list along with the object indices 0, 1, 3 for values 9, 10, 8
respectively (the object indices between s and t inclusive).

The maximal object list M constructed from our sample
database is shown in Table 5.

Table 5: Maximal Object List M
Attribute Maximal Object Set

a0 {0, 2}
a1 {2, 3}
a2 {1, 3}
b0 {0, 1, 3}
*b1 {0, 1}
b2 {1, 2}
c0 {0, 3}
c1 {1, 3}
c2 {1, 2}

The result is a list, of the set of maximal objects, that are
relatively close on a single attribute. Subscripts are used to
distinguish which objects are relatively close on an attribute;
the attribute and subscript together are called an attribute
symbol. Without a subscript, we could not later tell that
objects 0 and 3 are not relatively close on attribute a, even
though objects 0 and 2 are, and 2 and 3 are. At this stage,
it is not absolutely necessary to prune proper sub-clusters
for the rest of the algorithm to preform accurately, but it
decreases the size of the maximal object list and thus im-
pacts performance. So, let us prune b1 because it is a proper
sub-cluster of b0.

As can be seen in Table 5, there can be overlapping ob-
jects between two or more attribute symbols’ maximal ob-
ject sets. For example, both a0 and a1 have object 2 in their
maximal object sets. The more overlap that is present, the

larger the maximal object list M will be—and the larger the
hit on performance will be. Again, as can be found in [14], a
user-specified overlapping threshold ω is used to control the
percentage of overlap tolerated. That is, if the number of
objects in the most recently inserted maximal object con-
tains k objects, then the next maximal object set inserted
must have no more than ω × k objects in common with it.

Now, the maximal object list is used to create what is
known as an attribute list. For each object within the maxi-
mal object list, we make an entry into the attribute list and
record next to it each attribute symbol that has that object
in its maximal object set. For example, object 0 is in the
maximal object set of attribute symbols a0, b0, and c0 (ex-
cluding b1, which we pruned). Table 6 shows the attribute
list L formed from the maximal object list M in Table 5.
(N.B. the transformation from M to L is a lossless one.)

Table 6: Attribute List L
Object Attribute List

0 a0, b0, c0
1 a2, b0, b2, c1, c2
2 a0, a1, b2, c2
3 a1, a2, b0, c0, c1

Once the attribute list L has been derived, the problem
of mining subspace clusters (Definition 1) is reduced to a
quasi-frequent itemset mining problem, with L represent-
ing our database to be mined. For clarity, let us briefly
review frequent itemset mining. Frequent in the literature,
when describing itemset mining, is its analogy to a shop-
ping basket. Let A be some finite set of unique items, i.e.
A = {a1, . . . , an} (0 ≤ n < ∞). Any non-empty member
α in the power set of A is called an itemset (or basket of
items). Let a database D consist of transactions, with each
transaction being associated with some non-empty itemset
(basket). Given two itemsets α and β, if α ⊆ β, we say
β supports α. The number of transactions within D which
support an itemset α is defined as SuppD(α). Given a user-
defined support threshold η, if SuppD(α) ≥ η, then α is con-
sidered frequent. Thus, the goal of frequent itemset mining
is to find all itemsets within D which are frequent.

Let L represent the transaction database D (described
above); all unique attribute symbols represent the finite set
of items A; each attribute list represent an itemset; and each
object in L represent a transaction. Notice that for a given
set of objects T ⊆ O, if the attribute lists of all the objects
within T contain the same itemset α of attribute symbols,
then T and the attributes D in α form a subspace cluster
(T,D). This is because the relative distance between any ob-
jects in T on any attribute in D is less than relative distance
threshold δ (see Definition 1). To find the subspace clusters
with at least mo objects, thus, can be transformed to mining
frequent itemsets from the attribute lists database L as in
Table 6 with the support threshold η = mo. Here threshold
mo is the parameter to control the minimum number of ob-
jects which a subspace cluster must contain. Additionally,
we add another user-defined threshold ma, for conversely
controlling the minimum number of attributes in a subspace
cluster.

For example, if η = mo = 2 and ma = 2, the itemset
composed of attribute symbols {b0, c1} is supported by the
attribute lists of objects 1 and 3 (with object 1’s attribute

list being {a2, b0, b2, c1, c2} and object 3’s being
{a1, a2, b0, c0, c1}), because {b0, c1} ⊂ {a2, b0, b2, c1, c2} and
{b0, c1} ⊂ {a1, a2, b0, c0, c1}. Thus, we have found a sub-
space cluster (T,D) = ({1, 3}, {b0, c1}).

However, to find all subspace clusters according to Def-
inition 1—an additional step beyond the original frequent
itemset mining algorithm is required—and, is why we re-
fer to it as “quasi-” frequent itemset mining. Let the set
of objects which support a particular itemset α be defined
as the supporting set. The additional step is this: once an
itemset α, composed of attribute symbols, has been found
to be frequent, we must create a subspace cluster for each
subset of the supporting set F and α, for which the number
of objects in is greater than mo. For example, if a cer-
tain itemset α is found to be frequent, and its supporting
set F = {0, 1, 2} (with mo = 2), then the creation of the
following subspace clusters is made: ({0, 1}, α), ({0, 2}, α),
({1, 2}, α), and ({0, 1, 2}, α). Recall from Section 2, that
subspace clusters exhibit downward closure; thus, all sub-
clusters of a given subspace cluster, are themselves valid
subspace clusters, and do not require any additional relative
distance calculations. Using the aforementioned method, no
subspace clusters are skipped.

Finally, if the quasi-frequent itemset mining algorithm
were run against attribute list L with mo = 2 and ma = 2,
the following subspace clusters would be discovered (with
subscripts removed): ({1, 3}, {a, b}), ({1, 3}, {a, b, c}),
({1, 3}, {a, c}), ({0, 3}, {b, c}), ({1, 3}, {b, c}), and
({1, 2}, {b, c}).

In the next section, it is the goal of our algorithm to mine
for these subspace clusters, identify each cluster’s interval,
and prune away those subspace clusters that are not relaxed
and closed.

3.2 Mining
In Figure 1, we present an algorithm for the mining of

relaxed closed subspace clusters.
We use C to represent the set of relaxed closed clusters.

Each relaxed closed cluster in C is a triplet (z, α, I) such that
z is the set of objects of the cluster, α the set of attributes
of the cluster, I the interval the cluster belongs to. We also
use Ci to denote i-th related relaxed closed cluster in C
(i = 1, · · · , ||C||). Furthermore, the object and attribute set
together, in its traditional form (T,D), of Ci is denoted as
Ci.(z, α), and the interval of Ci is denoted by Ci.I .

The algorithm starts by mining the frequent itemsets from
L with support support threshold η = mo, the minimum
number of objects in a cluster. The frequent itemset mined
is the set of attribute symbols, denoted by α, on which the
objects are close with each other (with relative distance less
than δ). The supporting set of α is denoted by F . All the
pairs (α, F) are stored in set P . For each (α, F) from P such
that α contains at least ma attributes and each subset z of
F such that z contains at least mo objects, we calculate the
diameter of cluster (z, α), ξzα, and the interval I it belongs
to. The new cluster (z, α, I) is put into cluster set C. Lastly,
the newly added subspace cluster C||C|| is compared with all
previously found Ci, to see if Ci.(z, α) ⊂ C||C||.(z, α) and
Ci.I ≡ C||C||.I , in which case the sub-cluster Ci is pruned.
If at lease one Ci is found to satisfy this test, then there is
no need to check the converse, because it is an impossible
occurrence. On the other hand, if no Ci was found to satisfy
the previous test, then the converse is checked, that is, if

procedure RCSC() {
C ← ∅;
P ← {(α, F)| α is a frequent itemset from L with

η = mo and F its supporting set };
foreach (α, F) ∈ P such that ||α|| ≥ ma do

foreach z ∈ P(F) such that ||z|| ≥ mo do

- Calculate interval I based on ξzα;
C ← C ∪ {(z, α, I)};
flag ← true;
for (i← 1; i ≤ ||C|| − 1; i++) do

if (Ci.(z, α) ⊂ C||C||.(z, α) ∧Ci.I ≡ C||C||.I) then

- Mark Ci as pruned.;
flag ← false;

endif

endfor

if (flag) then
for (i← 1; i ≤ ||C|| − 1; i++) do

if (Ci.(z, α) ⊃ C||C||.(z, α) ∧ Ci.I ≡ C||C||.I) then

- Mark C||C|| as pruned.;
break;

end if

end for

end if
end foreach

end foreach

}

Figure 1: Relaxed Closed Subspace Clustering Al-
gorithm

C||C||.(z, α) ⊂ Ci.(z, α) and Ci.I ≡ C||C||.I , and if found
to be true, C||C|| is pruned. At the end of this algorithm,
C will contain only those subspace clusters that are relaxed
and closed—according to Definition 4.

Finally, running the RCSC algorithm on our running ex-
ample database S, which results in attribute list L with
mo = 2, ma = 2, δ = 0.51, p = 3, and ω = 1.0, the fol-
lowing relaxed and closed subspace clusters will be found:
({1, 3}, {a, c}, 1), ({1, 3}, {a, b, c}, 2), ({0, 3}, {b, c}, 2), and
({1, 2}, {b, c}, 2).

4. EXPERIMENTAL RESULTS
In this section, we present some experimental results from

an implementation of the previously described RCSC al-
gorithm. All experiments where run on a Quad-Core In-
tel Xeon (R) processor of 2.0GHz with 4096 KB of cache,
a total 4GB of memory, and Red Hat’s Enterprise Linux
Server Release 5.4 operating system. Synthetic and ran-
dom datasets where created using the MSBVAR [7] package
for the open-source statistical software R [20]—more specif-
ically the function rmultnorm found in that package. All
datasets generated follow a standard normal distribution,
with no covariance between random variables / attributes.
The following parameters are used in our experiments:

• T : The number of objects in the dataset, i.e. |T |.

• D: The number of attributes in the dataset, i.e. |D|.

• δ: The relative distance threshold.

• p: The relaxation factor (i.e., the number of divisions
the interval [0-δ] should be divided into).

• ω: The overlapping threshold.

• mo: The minimum number of objects a subspace clus-
ter should have.

• ma: The minimum number of attributes a subspace
cluster should have.

Figure 2 succinctly summarizes 40 datasets, of varying T
from 10 to 100 andD from 2 to 5 (with the other parameters’
values seen above the figure). In that figure one can see the
exponential nature of the algorithm.

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
)

T

D = 5
D = 4
D = 3
D = 2

δ = 0.1, p = 4, mo = 2, ma = 2, ω = 0.5

Figure 2: Synthetic and Random Datasets

Figure 3 shows the effect of p on the number of clusters
found by the algorithm.

 60

 70

 80

 90

 100

 110

 120

 130

 2 4 6 8 10 12 14 16 18 20

C

lu
st

er
s

F
ou

nd

P

T = 50, D = 3, δ = 0.1, mo = 2, ma = 2, ω = 0.5

Figure 3: The Effects of P on Clusters Found

As was discussed in Section 2: as p increases, the prob-
lem reduces to mining for simple subspace clusters; we see
that the number of clusters found approaches a maximum
of 132—the number of clusters that would be found if per-
forming the classic subspace clustering algorithm.

5. CONCLUSIONS AND FUTURE WORK
The main contribution of this paper, was the formulation

of the new definition of relaxed closed subspace clusters. An
algorithm for mining such clusters was also presented. In
the experimental evaluation, which demonstrated the algo-
rithm’s time complexity and some of its properties, the algo-
rithm proved to be very sensitive to small changes in dataset

sizes and/or thresholds (particularly δ). This is most likely
due to the sudden increase in the number of entries in the
maximal object list M , as those parameters (and others)
that could cause its increase exert their influence. It is that
sensitivety, which limited the evaluation of more threshold
values.

Because this is the first attempt in the creation of an algo-
rithm to mine a newly defined problem, more efficient algo-
rithms could no doubt be created. More efficient algorithms
could only help with the apparent extreme exponential na-
ture of the presented algorithm.

6. REFERENCES
[1] E. Achtert, C. Bohm, H.-P. Kriegel, P. Kröger,

I. Müller-Gorman, and A. Zimek. Detection and
visualization of subspace cluster hierarchies. In
DASFAA, volume 4443 of Lecture Notes in Computer
Science, pages 152–163. Springer, 2007.

[2] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc,
and J. S. Park. Fast algorithms for projected
clustering. In SIGMOD ’99: Proceedings of the 1999
ACM SIGMOD international conference on
Management of data, pages 61–72, New York, NY,
USA, 1999. ACM.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and
P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications.
SIGMOD Rec., 27(2):94–105, 1998.

[4] M. R. Anderberg. Cluster analysis for applications.
Academic Press, New York, 1973.

[5] R. E. Bellman. Adaptive control processes: A guided
tour. Princeton University Press, Princeton, New
Jersey, U.S.A., 1961.

[6] C. Bohm, K. Kailing, H.-P. Kriegel, and P. Kroger.
Density connected clustering with local subspace
preferences. In ICDM ’04: Proceedings of the Fourth
IEEE International Conference on Data Mining, pages
27–34, Washington, DC, USA, 2004. IEEE Computer
Society.

[7] P. T. Brandt. MSBVAR: Markov-Switching, Bayesian,
Vector Autoregression Models, 2009. R package version
0.4.0.

[8] Y. Chi, H. Wang, P. S. Yu, and R. R. Muntz. Catch
the moment: maintaining closed frequent itemsets
over a data stream sliding window. Knowl. Inf. Syst.,
10(3):265–294, 2006.

[9] C. Domeniconi, D. Papadopoulos, D. Gunopulos, and
S. Ma. Subspace clustering of high dimensional data.
In Proceedings of the SIAM International Conference
on Data Mining (SDM) 2004, pages 517–521, 2004.

[10] J. H. Friedman and J. J. Meulman. Clustering objects
on subsets of attributes. Journal of the Royal
Statistical Society, 66:815–849, 2004.

[11] J. Hartigan. Clustering Algorithms. John Wiley and
Sons, New York, 1975.

[12] N. Jardine and R. Sibson. Mathematical Taxonomy.
Wiley London, New York

”
1971.

[13] H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering
high-dimensional data: A survey on subspace
clustering, pattern-based clustering, and correlation
clustering. ACM Trans. Knowl. Discov. Data,
3(1):1–58, 2009.

[14] G. Liu, J. Li, K. Sim, and L. Wong. Distance based
subspace clustering with flexible dimension
partitioning. In ICDE, pages 1250–1254, 2007.

[15] C. Lucchese, S. Orlando, and R. Perego. Fast and
memory efficient mining of frequent closed itemsets.
IEEE Transactions on Knowledge and Data
Engineering, 18(1):21–36, 2006.

[16] S. C. Madeira and A. L. Oliveira. Biclustering
algorithms for biological data analysis: A survey.
IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 1(1):24–45, 2004.

[17] I. V. Mechelen, H. H. Bock, and P. D. Boeck.
Two-mode clustering methods: a structured overview.
Statistical methods in medical research, 13(5):363–394,
Oct. 2004.

[18] L. Parsons, E. Haque, and H. Liu. Subspace clustering
for high dimensional data: a review. SIGKDD Explor.
Newsl., 6(1):90–105, 2004.

[19] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M.
Murali. A monte carlo algorithm for fast projective
clustering. In SIGMOD ’02: Proceedings of the 2002
ACM SIGMOD international conference on
Management of data, pages 418–427, New York, NY,
USA, 2002. ACM.

[20] R Development Core Team. R: A Language and
Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2008.
ISBN 3-900051-07-0.

[21] G. Song, D. Yang, B. Cui, B. Zheng, Y. Liu, and
K. Xie. Claim: An efficient method for relaxed
frequent closed itemsets mining over stream data. In
DASFAA, pages 664–675, 2007.

[22] A. Tanay, R. Sharan, and R. Shamir. Biclustering
algorithms: A survey. In In Handbook of
Computational Molecular Biology, 2005.

[23] M. L. Yiu and N. Mamoulis. Iterative projected
clustering by subspace mining. IEEE Transactions on
Knowledge and Data Engineering, 17(2):176–189,
2005.

