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Abstract—In this paper, we rigorously define the problem of
mining probabilistic association rules from uncertain databases.
We further analyze the probability distribution space of a
candidate probabilistic association rule, and propose an efficient
mining algorithm with pruning to find all probabilistic association
rules from uncertain databases.

I. INTRODUCTION

In recent years, a great deal of interest in mining prob-
abilistic frequent itemsets (p-FIs) from uncertain databases
has been generated [1]–[6], [8]. Since the landmark work of
Bernecker et al. [3], almost all the research in mining p-FIs
uses a probabilistic model based on possible world semantics.
While frequent itemsets are useful, the most common purpose
for mining frequent itemsets is then to find association rules
from them. While generating association rules from frequent
itemsets is straightforward for certain databases [7], to find
probabilistic association rules from probabilistic frequent item-
sets is not trivial.

In this paper, we give a rigorous definition of a probabilistic
association rule (p-AR), based on possible world semantics,
using two ratios: (1) a frequency ratio ξ and (2) a confidence
ratio η, both between 0 and 1. Using two ratios instead of
one (confidence ratio), as in [8], we found that if η < ξ,
X ⇒ Y is always a probabilistic association rule with respect
to a minimum probability threshold minprob, given that
X ∪Y is a probabilistic frequent itemset with respect to ξ and
minprob. This observation offers the means of an extremely
useful pruning technique when performing probabilistic asso-
ciation rule mining. In other words, as long as η < ξ and Z is
a probabilistic frequent itemset with respect to ξ, X ⇒ Z−X
is guaranteed to be a probabilistic association rule for any
X ⊂ Z.

We also derive the recursive equation for the probability
distribution of a p-AR and show a dynamic programming
algorithm for mining p-ARs. We further introduce additional
pruning techniques in the mining algorithm based on the value
of η which reduces the computation required to determine
whether a candidate is a probabilistic association rule.

The rest of the paper is organized as follows: Section II
introduces the uncertain database model used in this paper,
probabilistic support based on possible world semantics, and
the probabilistic frequent itemset. This section also includes

our definition of a probabilistic association rule using two
ratios. Section III analyzes the probability distribution of asso-
ciation rules and presents a theorem of pruning when η < ξ.
Section IV presents the dynamic programming algorithm to
determine whether a candidate is a probabilistic association
rule and an algorithm for enumerating candidates, both with
pruning. Section V describes the results of our preliminary
evaluation of our mining algorithm. Section VI provides a
discussion of related and future work. Section VII concludes
the paper.

II. PRELIMINARIES

A. Uncertain Database Model

An uncertain database of size n denoted as T is a set of n
transactions, T = {t1, . . . , tn}. A transaction tj (1 ≤ j ≤ n)
is a set of items, each of which has a non-zero probability
0 < p ≤ 1 that it exists in the transaction tj . That is, p =
Pr(x ∈ tj) for any item x contained in tj (x ∈ tj). The items
in a transaction with an existential probability between 0 and 1
are called uncertain items, whereas the itemset with existential
probability 1 are called certain items.

When defining probabilistic frequent itemsets and asso-
ciation rules from uncertain databases, the principles and
theories of possible world semantics must be used. Under
possible world semantics, a possible world is a certain database
instantiated from the uncertain database by including or not
including every uncertain item. If the assumption of indepen-
dence between the transactions in T , as well as the items in
each transaction holds, the probability of each possible world
w can be calculated as follows:

Pr(w) =
∏

t∈T (w)

(
∏
x∈t

Pr(x ∈ t′) ·
∏
x 6∈t

(1− Pr(x ∈ t′))) (1)

where T (w) is the database containing all certain transactions
of possible world w, t is a transaction in T (w), t′ is the
corresponding transaction in the uncertain database T from
which t is instantiated, and x is an uncertain item of t′.

In the traditional certain database model, an itemset is ei-
ther contained in a transaction or not. In the uncertain database
model, we cannot say itemset X is contained in transaction
tj with certainty if X contains at least one uncertain item,
even though X ⊆ tj . What we have is a probability that
X is contained in transaction tj , Pr(X ⊆ tj). According to



possible world semantics, this is the marginal probability that
X is contained in tj as follows

Pr(X ⊆ tj) =
∑

w∈W,X⊆tj(w)

Pr(w) (2)

where W is the set of all possible worlds and tj(w) is the j-th
transaction in the certain database of possible world w.

From (1) and (2), this marginal probability can be ex-
pressed as follows [3]:

Pr(X ⊆ tj) =
∏
x∈X

Pr(x ∈ tj) (3)

The probability that tj does not contain X thus is

Pr(X 6⊆ tj) = 1− Pr(X ⊆ tj) (4)

B. Probabilistic Support and Frequent Itemsets

Given an uncertain database of size n, T , and an itemset
X , the probabilistic support of X in T , denoted as Sup(X,T ),
is a random variable that can have values 0, 1, . . . , n. Ac-
cording to the possible world semantics, the probability that
Sup(X,T ) = i, 0 ≤ i ≤ n, denoted as pi(X), is the marginal
probability

pi(X) =
∑

w∈W,Sup(X,T (w))=i

Pr(w) (5)

where Sup(X,T (w)) is the support of X in the certain
database T (w) of possible world w, which is the number of
transactions in T (w) that contain X . pi(X) for i = 0, . . . , n
is the probability mass function (pmf) of the support of X in
T and we have

∑n
i=0 pi(X) = 1.

Let S be a set of i transactions from T . The probability that
every transaction in S contains itemset X and every transaction
in T − S does not contain X is∏

t∈S
Pr(X ⊆ t)

∏
t∈T−S

(1− Pr(X ⊆ t))

This is obtained by summing the probability of each possible
world in which every transaction in S contains itemset X and
every transaction in T − S does not contain X , using (1), (3)
and (4). Since there are many different subsets S ⊆ T with size
i, the probability of Sup(X,T ) = i, pi(X), is the summation
of the probabilities above over different subsets S [3]:

pi(X) =
∑
S ⊆ T,
‖S‖ = i

∏
t∈S

Pr(X ⊆ t)
∏

t∈T−S
(1−Pr(X ⊆ t)) (6)

Given a minimum support ratio ξ ∈ (0, 1), an itemset
X is a probabilistic frequent itemset (p-FI) if the probability
that Sup(X,T ) is greater than or equal to ξ‖T‖ (i.e. ξn) is
above a minimum probability threshold denoted as minprob.
Since pi(X) is the pmf of Sup(X,T ), the probability that
Sup(X,T ) is greater than or equal to ξn is

∑n
i=dξne pi(X).

Hence, we say that X is a frequent itemset if and only if∑n
i=dξne pi(X) ≥ minprob. Computing the pmf pi(X) using

(6) is expensive. Bernecker et al. proposed a dynamic pro-
gramming algorithm to calculate pi(X) to mine probabilistic
frequent itemsets efficiently in [3].

C. Probabilistic Association Rules (p-ARs)

Given an uncertain database T of size n, a minimum
frequency ξ ∈ (0, 1), a minimum confidence η ∈ (0, 1),
and a minimum probability threshold minprob, X ⇒ Y
is a probabilistic association rule (p-AR) if and only if
X ∩ Y = ∅, and the probability that Sup(X ∪ Y, T ) ≥ ξn
and Sup(X ∪ Y, T ) ≥ ηSup(X,T ) is greater or equal to
minprob.

According to possible worlds semantics, the probability
that Sup(X ∪Y, T ) ≥ ξn and Sup(X ∪Y, T ) ≥ ηSup(X,T ),
denoted as P (X,Y, ξ, η, T ), is the sum of each possible world
w’s probability of occurring satisfying Sup(X ∪ Y, T (w)) ≥
ξn and Sup(X ∪Y, T (w)) ≥ ηSup(X,T (w)), where T (w) is
the certain database of small world w. That is,

P (X,Y, ξ, η, T ) =
∑
w ∈ W,

Sup(X ∪ Y, T (w)) ≥ ξn,
Sup(X ∪ Y, T (w)) ≥ ηSup(X, T (w))

Pr(w) (7)

The problem of mining probabilistic association rules, is
to find all the probabilistic association rules from an uncertain
base T , given the thresholds: minimum frequency ξ, minimum
confidence η, and minimum probability minprob.

III. PROBABILITY DISTRIBUTION FOR ASSOCIATION
RULES

Calculating P (X,Y, ξ, η, T ) using (7) is infeasible, as the
number of possible worlds are too numerous. Thus, we need
to find another way to calculate it.

Let us consider the probability that a transaction tj contains
both X and Y :

Pr(X ⊆ tj ∧ Y ⊆ tj) = Pr(X ∪ Y ⊆ tj)
=

∏
z∈X∪Y

Pr(z ∈ tj)

=
∏
x∈X

Pr(x ∈ tj)
∏
y∈Y

Pr(y ∈ tj)

= Pr(X ⊆ tj)Pr(Y ⊆ tj)
(8)

The third equality above is due to X ∩ Y = ∅ and the second
and the fourth follow (3).

The probability that a transaction tj contains X and but
not Y is, thus,

Pr(X ⊆ tj ∧ Y 6⊆ tj) = Pr(X ⊆ t)(1− Pr(Y ⊆ t)) (9)

because Pr(X ⊆ tj ∧ Y 6⊆ tj) + Pr(X ⊆ tj ∧ Y ⊆ tj) =
Pr(X ⊆ tj).

Consider the possible worlds w where j transactions con-
tain both X and Y and another i transactions contain X but not
Y . These j + i transactions are the transactions containing X
and the rest n−(j+i) transactions do not contain X . Thus, the
support of X and X∪Y in theses possible worlds are j+i and
j, respectively. Let S1 and S2 be the sets of the transactions
that contain X but not Y , and X and Y , respectively and we
have ‖S1‖ = i and ‖S2‖ = j. Let S1 and S2 also denote the
same sets of transactions in the uncertain database. Then, the
probability that the i transactions of S1 contain X but not Y ,
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Fig. 1. Probability Distribution of pi,j(X,Y )

the j transactions of S2 contains both X and Y , and the rest
of n− (j + i) transactions do not contain X is as follows:∏

t∈S1

Pr(X ⊆ t)(1− Pr(Y ⊆ t)) ·∏
t∈S2

Pr(X ⊆ t)Pr(Y ⊆ t) ·∏
t∈T−Ss−S1

(1− Pr(X ⊆ t))

according to (9), (8) and (4).

Further, the probability that there are j transactions in
T containing both X and Y and i transactions containing
X but not Y , or equivalently the Sup(X ∪ Y, T ) = j and
Sup(X,T ) − Sup(X ∪ Y, T ) = i, denoted as pi,j(X,Y ), is
given as follows:

pi,j(X,Y ) =
∑

S1 ⊆ T,
‖S1‖ = i,
S2 ⊆ T,
‖S2‖ = j

∏
t∈S1

Pr(X ⊆ t)(1− Pr(Y ⊆ t)) ·

∏
t∈S2

Pr(X ⊆ t)Pr(Y ⊆ t) ·∏
t∈T−Ss−S1

(1− Pr(X ⊆ t)) (10)

Obviously, j + i ≤ n and 0 ≤ i, j ≤ n. pi,j(X,Y ) is actually
the pmf of the number of transactions containing X but not
Y , and both X and Y , or equivalently Sup(X ∪ Y, T ) = j
and Sup(X,T ) = j + i. Also, we have∑

0≤i,j≤n,j+i≤n
pi,j(X,Y ) = 1.

Therefore, the probability that Sup(X ∪ Y, T ) ≥ ξn and
Sup(X ∪ Y, T ) ≥ ηSup(X,T ), (denoted as P (X,Y, ξ, η, T ))
is the sum of those pi,j(X,Y ) satisfying both j ≥ ξn and
j ≥ η(j + i). Also, j ≥ η(j + i) is equivalent to j ≥ η

1−η i.

Thus, we have

P (X,Y, ξ, η, T ) =
∑

ξn ≤ j ≤ n, j + i ≤ n
j ≥ η

1−η i, i ≥ 0

pi,j(X,Y ) (11)

Figure 1(a) shows the points where pi,j(X,Y ) is defined. The
shaded area is the intersection of the two triangles (1) j ≥
ξn, i ≥ 0 and j+i ≤ n and (2) j ≥ η

1−η i, i ≥ 0 and j+i ≤ n.
The summation of the pi,j(X,Y ) in the shaded area gives
P (X,Y, ξ, η, T ) as shown in (11). X ⇒ Y is a probabilistic
association rule if and only if this P (X,Y, ξ, η, T ) is greater
or equal to threshold minprob.

Notice that the intersection of lines j ≤ η
1−η i and j+i = n

is (i, j) = ((1− η)n, ηn). Thus, when η ≤ ξ, the intersection
of the two triangles is the first triangle j ≥ ξn, i ≥ 0
and j + i ≤ n itself as illustrated in Figure 1(b). The
summation of the pi,j(X,Y ) in this triangle is the probability
that j = Sup(X ∪Y, T ) ≥ ξn. If X ∪Y is a p-FI with respect
to ξ defined in Section II-B and η ≤ ξ, the summation of
pi,j(X,Y ) in this triangle is greater than or equal to minprob.
Thus, P (X,Y, ξ, η, T ) ≥ minprob and X ⇒ Y is a p-AR
with respect to ξ and η. We summarize this finding in the
following theorem.

Theorem 1: If itemset Z is a probabilistic frequent itemset
with respect to minimum frequency ξ and minimum probabil-
ity threshold minprob and minimum confidence η is less than
or equal to ξ, X ⇒ Y is a probabilistic association rule with
respect to ξ, η and minprob for any X ⊂ Z and Y = Z−X .

Proof: If Z = X ∪ Y is a probabilistic frequent itemset
with respect to ξ and minprob, then the probability that
Sup(X ∪ Y, T ) ≥ ξn, where n = ‖T‖, is greater than or
equal to minprob. The probability that Sup(X ∪Y, T ) ≥ ξn
is equal to

∑
i ≥ 0, j + i ≤ n,
ξn ≤ j ≤ n

pi,j(X,Y ). We thus have∑
i ≥ 0, j + i ≤ n,
ξn ≤ j ≤ n

pi,j(X,Y ) ≥ minprob.

We now show that j ≥ ξn, j + i ≤ n and ξ ≥ η implies
j ≥ η

1−η i. First we have i ≤ n − j ≤ n − ξn = (1 − ξ)n.



Since j ≥ ξn and ξ ≥ η, we have

j

i
≥ ξn

(1− ξ)n =
ξ

1− ξ ≥
η

1− η
which gives j ≥ η

1−η i. Since j ≥ ξn, j + i ≤ n and ξ ≥ η
implies j ≥ η

1−η i, we have∑
i ≥ 0, j + i ≤ n,
ξn ≤ j ≤ n,
j ≥ η

1−η i

pi,j(X,Y ) =
∑

i ≥ 0, j + i ≤ n,
ξn ≤ j ≤ n

pi,j(X,Y )

≥ minprob.

Thus, X ⇒ Y is a probabilistic association rule with respect
to ξ, η and minprob.

Theorem 1 tells us that if η ≤ ξ and Z is a p-FI, we can
simply enumerate all the subset X of Z and every X ⇒ Z−X
is a p-AR; thus, we need only mine p-ARs when η > ξ.

IV. MINING PROBABILISTIC ASSOCIATION RULES

A. Dynamic Programming Algorithm

The complexity of computing pi,j(X,Y ) directly by (10) is
exponential with n. We can use dynamic programming method
to reduce it to O(n3).

Let Tk be an uncertain database made of the first k
transactions {t1, . . . , tk} from T . That is, T0 = ∅ and
Tk = Tk−1 ∪ {tk} for k = 1, . . . , n. Let the probability
that there are j transactions in Tk containing both X and Y
and i transactions containing X but not Y , or equivalently
Sup(X∪Y, Tk) = j and Sup(X,Tk)−Sup(X∪Y, Tk) = i, be
denoted as p(k)i,j (X,Y ). Obviously, i+ j ≤ k and 0 ≤ i, j ≤ k
in p(k)i,j (X,Y ) and we have∑

0≤i,j≤k,j+i≤k
p
(k)
i,j (X,Y ) = 1. (12)

That is, all the p(k)i,j (X,Y ) outside of the triangle of 0 ≤ i, j ≤
k, j+i ≤ k are zeros. Notice that p(n)i,j (X,Y ) is the pi,j(X,Y )
given in (10).

Since Tk = Tk−1 ∪ {tk}, p(k)i,j (X,Y ) can be calculated
from p

(k−1)
i,j (X,Y ) using the following recursion:

p
(k)
i,j (X,Y ) = p

(k−1)
i−1,j (X,Y )Pr(X ⊆ tk)(1− Pr(Y ⊆ tk))
p
(k−1)
i,j−1 (X,Y )Pr(X ⊆ tk)Pr(Y ⊆ tk) +
p
(k−1)
i,j (X,Y )(1− Pr(X ⊆ tk)) (13)

with p
(k)
−1,j(X,Y ) = 0 and p

(k)
i,−1(X,Y ) = 0 due to (12).

This is because transaction tk either contains both X and
Y , or contains X but not Y , or does not contain X at all.
The recursive equation (13) above is derived from the Law of
Total Probability and the fact that transaction tk is independent
from all the transactions in Tk−1. In particular, when the case
is that Tk has j transactions containing both X and Y and i
transactions containing X but not Y , only one of the following
situations will be true: (1) tj does not contain X and Tk−1
has j transactions containing both X and Y and i transactions
containing X but not Y , (2) tj contains both X and Y and

Tk−1 has j − 1 transactions containing both X and Y and i
transactions containing X but not Y , or (3) tj contains X but
not Y and Tk−1 has j transactions containing both X and Y
and i− 1 transactions containing X but not Y .

Note that the values of p(k−1)i,j (X,Y ) are only used to
calculate the values of p(k)i,j (X,Y ). Once used, they do not
need to exist. Thus, we can use two 2-dimensional data arrays
(f0[i, j]) and (f1[i, j]) to store values of p(k)i,j (X,Y ) for even
and odd k, respectively. The following triple-nested loop will
calculate and leave p(n)i,j (X,Y ) in fn mod 2[i, j]:

Initialize array f0 with f0[i, j] =
{

1 if i = j = 0
0 otherwise ;

Initialize array f1 with zero for all elements;
for k = 1, n

for i = 0, k
for j = 0, k − i

tmp = fk−1 mod 2[i, j](1− pXk );
if (i > 0) tmp += f(k−1) mod 2[i− 1, j]pXk (1− pYk );
if (j > 0) tmp += f(k−1) mod 2[i, j − 1]pXk p

Y
k ;

fk mod 2[i, j] = tmp;

where pXk and pYk are the shorthands for Pr(X ⊆ tk) and
Pr(Y ⊆ tk), respectively. The nested loop above is the
dynamic programming method to calculate p

(k)
i,j (X,Y ) for

k = 1, . . . , n using (13). The if statements in the loop body are
to deal with boundary conditions for p(k)i,j (X,Y ), where i = 0

or j = 0 which require values p(k−1)−1,j (X,Y ) and p(k−1)i,−1 (X,Y ).
These values should be all zeros, because neither of i and j
can be negative.

Iteration k (k = 1, . . . , n) of the outer-most loop calculates
each p(k)i,j (X,Y ) and stores them in fk mod 2[i, j] in the triangle
delineated by 0 ≤ i, j ≤ k, j+ i ≤ k. It uses the p(k−1)i,j (X,Y )
values calculated by the previous iteration k − 1 and stores
them in f(k−1) mod 2[i, j] in the triangle delineated by 0 ≤
i, j ≤ k − 1, j + i ≤ k − 1 (when k > 1), as well as the
initial values stored in the f(k−1) mod 2[i, j] on the diagonal of
j + i = k. The initial values on the diagonal j + i = k of
f(k−1) mod 2[i, j] are p(k−1)i,j (X,Y ) with j + i = k > k − 1.
They should be zeros, because j + i cannot exceed k − 1 in
p
(k−1)
i,j (X,Y ). (Also see (12)). The initial value of in f0[0, 0]

is p(0)0,0(X,Y ). According to (12), this value should be 1. Thus,
the array f0 should be initialized as follows

f0[i, j] =

{
1 if i = j = 0
0 otherwise

and f1 should be initialized with all zero.

B. Pruning

To determine whether X ⇒ Y is a p-AR with respect to
ξ, η ,and minprob (and η > ξ)—we can either sum values
of pi,j(X,Y ) in the shaded area of Figure 1(a) and see if the
sum is greater than or equal to minprob, or sum the values
of pi,j(X,Y ) in the un-shaded area to see if the sum is less
than or equal to 1 − minprob. The intersection of the lines
j + i = n and j = η

1−η i is (i, j) = ((1 − η)n, ηn) as shown



in Figure 1(a). To compute the sum of the points for each
pi,j(X,Y ) in the shaded area, we only need to calculate the
values for each point pi,j(X,Y ) in the trapezoid bounded by
i = 0, i = (1 − η)n, j = 0, and j = n − i. If we want
to calculate the sum of of the points for each pi,j(X,Y ) in
the unshaded area, we only need to to calculate the values
for each point pi,j(X,Y ) in the trapezoid bounded by j = 0,
j = ηn, i = 0, and i = n − j. We want to chose the smaller
of the possible trapezoids to speed computation. The areas of
trapezoids for computing the shaded and unshaded areas are
(1−η2)n2

2 and (2η−η2)n2

2 , respectively. Thus, if 2η ≥ 1, i.e.
η ≥ 0.5, we chose to calculate the trapezoid for the shaded
area. Otherwise, we calculate the trapezoid for the unshaded
area. The dynamic programming algorithm with pruning to
determine whether X ⇒ Y is a p-AR is shown in Figure 2. It
is assumed that function p-AR(X,Y, ξ, η,minprob) is called
only when X ∩ Y = ∅ and X ∪ Y is a p-FI with respect to ξ
and minprob.

C. Finding Association Rules

For X ⇒ Y with X ∩ Y = ∅ to be a p-AR with respect
to ξ, η and minprob, X ∪ Y has to be a p-FI with respect
to ξ and minprob. We use the apriori set enumeration [7]
and Bernecker’s dynamic programming algorithm [3] to find
probabilistic frequent itemsets (p-FIs) Z with respect to ξ and
minprob.

For each p-FI Z, we use an algorithm to enumerate the
candidates X,Y with X ∪ Y = Z and X ∩ Y = ∅. Figure 3
shows the enumeration tree of p-AR candidates X,Y for p-FI
Z = abcd. At each iteration of the enumeration, an item is
moved from antecedent X which is less than all the items in
consequent Y and add it to Y , to be a child of X,Y . Formally,
let X = x1 · · ·xn and Y = y1 · · · ym and items in X and Y
are all ordered according to the total order of the items, i.e.
xi < xj and yi < yj for i < j. Then X,Y has only those
children x1 · · ·xi−1xi+1 · · ·xn, xiy1 · · · ym such that xi < y1.
Notice that the consequents in each of the descendants of
X,Y are supersets of Y . According to the anti-monotonicity
principle proved by [8], if X ⇒ Y is not a p-AR, none of the
descendants of X,Y would be a p-AR and, thus, the entire
subtree formed by node X,Y can be pruned out.

V. PERFORMANCE EVALUATION

Here some preliminary tests are disseminated, whose re-
sults were culled from an implementation of the p-AR mining
algorithm described above.

The uncertain database we used was converted from the
certain database chess from the Frequent Itemset Mining
Dataset Repository fimi.ua.ac.be/data/. The transformation of
the chess database was performed as follows: for each item
in each transaction, we assign a random probability p between
0 and 1 drawn from Beta distribution with α = 10 and
β = 1, to be used as the item’s existential probability. This
procedure was run five times to produce five random datasets.
Each experiment (data point in the performance evaluation)
was run on all five datasets and the results of each averaged.
To reduce the amount of time needed to run each experiment,
the total number of unique items was reduced to 14, only the
first 100 transactions were used, and only rules X ⇒ Y of

boolean p-AR(X,Y, ξ, η,minprob)
{
if (η ≤ ξ) return true;

Initialize array f0 with f0[i, j] =
{

1 if i = j = 0
0 otherwise ;

Initialize array f1 with zero for all elements;
float sum = 0;
if (η ≥ 0.5)

for k = 1, n
for i = 0,min(k, b(1− η)nc)

for j = 0, k − i
tmp = fk−1 mod 2[i, j](1− pXk );
if (i > 0) tmp =+ f(k−1) mod 2[i− 1, j]pXk (1− pYk );
if (j > 0) tmp =+ f(k−1) mod 2[i, j − 1]pXk p

Y
k ;

fk mod 2[i, j] = tmp;
if (k = n ∧ j ≥ dηne ∧ j ≥ d η

1−η ie)
sum += fk mod 2[i, j];
if (sum ≥ minprob) return true;

end if
end for

end for
end for
return false;

else
for k = 1, n

for i = 0, n
for j = 0,min(k − i, bηnc)

tmp = fk−1 mod 2[i, j](1− pXk );
if (i > 0) tmp =+ f(k−1) mod 2[i− 1, j]pXk (1− pYk );
if (j > 0) tmp =+ f(k−1) mod 2[i, j − 1]pXk p

Y
k ;

fk mod 2[i, j] = tmp;
if (k = n ∧ (j < bηnc ∨ j < b η

1−η ic)
sum += fk mod 2[i, j];
if (sum > 1− minprob) return false;

end if
end for

end for
end for
return true;

end if

Fig. 2. Dynamic Programming Algorithm

, abcd

abcd,
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Fig. 3. Enumeration of AR Candidates



TABLE I. AVERAGE TIME IN P-AR() (MS)

ξ

η 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.0000402 0.0000352 0.0000317 0.0000353 0.0000373 0.0000000 0.0000000 0.0000000 0.0000000
0.15 3.821358 0.0000311 0.0000346 0.0000228 0.0000208 0.0001322 0.0000000 0.0000000 0.0000000
0.2 4.82638 0.0000273 0.0000349 0.0000337 0.0000101 0.0000693 0.0000000 0.0000000 0.0000000
0.25 5.710972 5.706706 0.0000331 0.0000374 0.0000374 0.0000000 0.0000000 0.0000000 0.0000000
0.3 6.513988 6.571548 0.0000304 0.0000254 0.0000517 0.0002080 0.0000000 0.0000000 0.0000000
0.35 7.338718 7.369756 7.40545 0.0000293 0.0000402 0.0000000 0.0000000 0.0000000 0.0000000
0.4 8.107516 8.129858 8.151792 0.0000373 0.0000423 0.0000691 0.0000000 0.0000000 0.0000000
0.45 8.777348 8.816462 8.831548 8.914608 0.0000165 0.0000691 0.0000000 0.0000000 0.0000000
0.5 2.102258 2.124626 2.139828 2.181686 0.0000379 0.0000000 0.0000000 0.0000000 0.0000000
0.55 1.941636 1.972038 1.988556 2.030988 2.075702 0.0000000 0.0000000 0.0000000 0.0000000
0.6 1.827738 1.869998 1.87882 1.92489 1.970294 0.0000694 0.0000000 0.0000000 0.0000000
0.65 1.683634 1.707508 1.73654 1.783594 1.821012 1.856634 0.0000000 0.0000000 0.0000000
0.7 1.532532 1.546806 1.572222 1.61223 1.670418 1.695872 0.302456 0.0000000 0.0000000
0.75 1.361404 1.377852 1.387406 1.432224 1.472064 1.495822 1.464326 0.0000000 0.0000000
0.8 1.12049 1.137 1.142428 1.171142 1.215424 1.244568 1.2089 0.0000000 0.0000000
0.85 0.9382024 0.9464922 0.9661912 0.9943356 1.012592 1.047416 0.9889136 0.877778 0.0000000
0.9 0.6398418 0.644898 0.6557288 0.6697286 0.6936324 0.7244038 0.6548648 0.5444444 0.0000000
0.95 0.4179482 0.4182372 0.4276158 0.4408202 0.4587366 0.4733338 0.4721832 0.4111112 0.0000000

total length 6 (length of X plus the length of Y ) or less were
considered as possible p-ARs. The aforementioned restrictions
were necessary because mining probabilistic association rules
is extremely time-expensive: to find all probabilistic frequent
itemsets is already exponential. Then, to enumerate allocation
rule candidates for each frequent itemset as shown in Figure 3
is exponential with respect to the length of the frequent itemset.

Bernecker et al.’s dynamic programming algorithm [3] is
used to find probabilistic frequent itemset and for each prob-
abilistic frequent itemset found, we follow the enumeration
in Figure 3 with apriori pruning and call function p-AR() in
Figure 2 to determine whether a candidate is a p-AR. We
measured two times in our analysis: (1) the total time of mining
all probabilistic association rules and (2) the average time of
running function p-AR() in Figure 2. The tests are run on a
Dell Precision T7500 machine with Intel Xeon CPU (E5620)
2.4 GHz w/ 4 Cores and 48GB RAM. Again, each experiment
was the average of the results culled from running each of the
five random datasets previously mentioned.

In all experiments we fix minprob = 0.9, and vary ξ
(from 0.1 to 0.9 in 0.1 increments) and η (from 0.1 to 0.95 in
0.05 increments). In Table I the average time in milliseconds
needed to determine whether a candidate association rule is
an uncertain association rule (i.e., the average time taken to
execute the function p-AR()) for various values of η and ξ. In
the table, one sees the drastic effect of pruning according to
the value of η with respect to ξ. In particular, one sees that
when η < ξ, that the time is virtually zero, as the function
p-AR() simply returns true. One also sees the effect of the
differing areas of the trapezoid being computed when η > ξ.
For ξ = 0.1, 0.2, 0.3 and 0.4, times all peeked at η = 0.45.
We see that the time is decreasing as η decreases from 0.45 to
ξ. This is because the trapezoid covering the unshaded area,
which is computed when η < 0.5, is decreasing as η decreases.
The time is also decreasing as η increases from 0.5 to 0.95.
This is because the trapezoid covering the shaded area, which
is computed when η ≥ 0.5, is decreasing as η increases. We
also see the time is decreasing as η increases from ξ to 0.95
for ξ = 0.5, . . . , 0.9 for the same reason.

Table II shows the total average time of mining probabilis-
tic frequent itemsets (p-FIs) and probabilistic association rules

TABLE II. AVERAGE TOTAL EXECUTION TIME (SECS)

ξ

η 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 16.2 12.2 10 4 1 0 0 0 0
0.15 2332.8 12.2 10 4 1 0 0 0 0
0.2 2813.6 12 10 4 1 0 0 0 0
0.25 3024.2 3006 10 4 1 0 0 0 0
0.3 2525 2529 10 4 1 0 0 0 0
0.35 1847.2 1835 1806.8 4 1 0 0 0 0
0.4 1338.6 1320.8 1283.6 4 1 0 0 0 0
0.45 674.4 653.8 611.4 546.4 1 0 0 0 0
0.5 135.4 128.4 117 97.6 1 0 0 0 0
0.55 75.8 68.6 57.8 38.4 25 0 0 0 0
0.6 60 53 42.6 23.6 10.6 0 0 0 0
0.65 53.8 46.8 37.2 19.2 6.8 2.2 0 0 0
0.7 49.8 43 34.4 17.4 6 1.6 0 0 0
0.75 45.8 39.6 31 15.6 5 1 0 0 0
0.8 40.8 34.6 27.4 13.4 4 1 0 0 0
0.85 36.2 31 24.6 12 4 1 0 0 0
0.9 29.8 24.8 19.8 9.2 3 0 0 0 0
0.95 24.8 20 16.4 7.4 2 0 0 0 0

(p-ARs) in seconds. One can see that when η is held constant,
the total mining time decreases over increasing values of ξ,
because for lower values of ξ far more p-FIs are generated.
When ξ is held constant, we see again that for values of ξ > η,
the total time is small because of the near zero time needed to
return true from p-AR(); however, we see that as η increases
past ξ, total time decreases as the number of candidate p-ARs
decreases. For example, for ξ = 0.1, the total mining time
decreases as η increases from 0.25 to 0.95. This is because
with a higher η fewer candidate p-ARs are generated. The low
total time for η = 0.1 is because the running time of function
p-AR() is very near zero. Similarly for ξ = 0.4, we see that
the total time decreases as η increases from 0.45 to 0.95. The
total times for 0.1 ≤ η ≤ 0.45 are low; again, because of the
near zero time needed to return true from p-AR().

VI. RELATED AND FUTURE WORK

Most work in mining uncertain data based on possible
world semantics are centered around finding probabilistic
frequent itemsets [3], [6], [8] or probabilistic frequent closed
itemsets [4], [5]. In [8], Sun et al. presented an algorithm for
mining probabilistic association rules. The algorithm dissem-



inated in [8], uses parameter minsup, an integer between
0 and the size of database n for the minimum support, and
minconf (η in our paper), a real number between 0 and 1 for
the minimum confidence, to define a probabilistic association
rule, whereas we use two ratios ξ (minimum frequency) and
η (minimum confidence), between 0 and 1. As a consequence,
we are able to find the mathematical relationship between
the two parameters (Theorem 1) by analyzing the probability
distribution space, and use it to prune the p-AR search space
significantly when η ≤ ξ. We further prune the search space by
choosing the smaller area of the probability distribution space
depending on the value of η, whereas [8] always calculates
the probability distribution in the shaded area no matter how
small η is.

The association rule probability distribution in [8] is cal-
culated from an itemset’s support probability distribution,
using convolution through a Fast Fourier Transformation. In
this paper, we use a two-dimensional dynamic programming
approach to calculate a candidate association rule’s probability
distribution directly. The theoretical time complexity of the
algorithm in [8] is O(n2 log n), where ours is O(n3) and
O(1), when η > ξ and η ≤ ξ, respectively. Even when
η > ξ, since our algorithm has deep pruning with η close
to 1 or 0, it is our belief that our algorithm will perform well,
particularly when η is close to 1 or 0. One future work, is to
compare the performance between the two algorithms using
practical experiments—using databases of different sizes and
using varying thresholds.

VII. CONCLUSION

In this paper, we defined probabilistic association rules (p-
ARs) using two minimum ratios, minimum frequency ξ and
minimum confidence η. We throughly analyzed the probabil-
ity distribution space for a candidate association rule, and
proposed an efficient dynamic programming algorithm with
pruning for mining probabilistic association rules.
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